### МИНОБРНАУКИ РОССИИ

# ВЛАДИВОСТОКСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

# КАФЕДРА ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ И СИСТЕМ

# Рабочая программа дисциплины (модуля) ТЕХНОЛОГИИ ВОЛОКОННОЙ И ИНТЕГРАЛЬНОЙ ОПТИКИ

Направление и направленность (профиль)
11.03.02 Инфокоммуникационные технологии и системы связи. Интернет-вещей и оптические системы и сети

 $\Gamma$ од набора на ОПОП 2023

Форма обучения очная

Рабочая программа дисциплины (модуля) «Технологии волоконной и интегральной оптики» составлена в соответствии с требованиями ФГОС ВО по направлению подготовки 11.03.02 Инфокоммуникационные технологии и системы связи (утв. приказом Минобрнауки России от 19.09.2017г. №930) и Порядком организации и осуществления образовательной деятельности по образовательным программам высшего образования — программам бакалавриата, программам специалитета, программам магистратуры (утв. приказом Минобрнауки России от 06.04.2021 г. №245).

### Составитель(и):

Белоус И.А., кандидат физико-математических наук, доцент, Кафедра информационных технологий и систем, Igor.Belous@vvsu.ru

Гамаюнов Е.Л., кандидат технических наук, заведующий кафедрой, Базовая кафедра современной оптики и фотоники, E.Gamayunov@vvsu.ru

Утверждена на заседании кафедры информационных технологий и систем от 29.05.2024 , протокол № 9

### СОГЛАСОВАНО:

Заведующий кафедрой (разработчика) Кийкова Е.В.

### ДОКУМЕНТ ПОДПИСАН ЭЛЕКТРОННОЙ ПОДПИСЬЮ

Сертификат 1575633692 Номер транзакции 000000000D64642 Владелец Кийкова Е.В.

### 1 Цель, планируемые результаты обучения по дисциплине (модулю)

Целью освоения дисциплины «Технологии волоконной и интегральной оптики» является овладение навыками построения физико-математических моделей процессов, связанных с распространением света в различных средах и взаимодействием света с веществом.

Задачи освоения дисциплины состоят в:

- формировании представлений об основных физических явлениях и закономерностях, лежащих в основе распространения оптического излучения;
- формировании представлений о методах построения физико-математических моделей процессов, связанных с распространением света в различных средах;
- формировании представлений о методах построения физико-математических моделей процессов, связанных с взаимодействием света с веществом;

Планируемыми результатами обучения по дисциплине (модулю), являются знания, умения, навыки. Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы, представлен в таблице 1.

| Tr -      | 1 TC           |                              |                                        | /       |
|-----------|----------------|------------------------------|----------------------------------------|---------|
| LOOTINI   | K OMHOTOTIIIII | NAMILIANIANII DA MANUTI TOTA | ι πικιππιπικαπα πιπισιπικαι ο          | MACHINA |
| таулина і | — компетенции. | оприменти при в предушена п  | э изучсния лиспиплины                  |         |
|           |                | оормируемые в результато     | - 110 / 10111111 / 110 / 1111111111111 | (1110)  |

| и онон ро                                                         | Код и                                                                                                                   | Код и<br>формулировка                                                                                                     | Результаты обучения по дисциплине |        |                                                                                                                                                                                                                                                   |  |
|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Название ОПОП ВО,<br>сокращенное                                  | формулировка<br>компетенции                                                                                             | индикатора<br>достижения<br>компетенции                                                                                   | Код<br>резуль<br>тата             | Фор    | мулировка результата                                                                                                                                                                                                                              |  |
| 11.03.02 «Инфокоммуникационные технологии и системы связи» (Б-ИК) | ПКВ-3:<br>Способен<br>осуществлять<br>развитие и<br>модернизацию<br>транспортных<br>сетей и сетей<br>передачи<br>данных | ПКВ-3.2к: Осуществляет развитие и модернизацию сетей передачи данных с целью улучшения качества и доступности услуг связи | РД1<br>РД1                        | Умение | основных физических явлениях и закономерностях, лежащих в основе распространения оптического излучения анализировать потребности пользователей и планировать мероприятия по оптимизации функциональной структуры оптических сетей передачи данных |  |
|                                                                   |                                                                                                                         |                                                                                                                           | РД1                               | Навык  | построения физико-<br>математических моделей<br>процессов, связанных с<br>распространением света<br>в различных средах                                                                                                                            |  |

## 2 Место дисциплины (модуля) в структуре ОПОП

Дисциплина "Технологии волоконной и интегральной оптики" относится к части учебного плана, формируемой участниками образовательных отношений.

### 3. Объем дисциплины (модуля)

Объем дисциплины (модуля) в зачетных единицах с указанием количества академических часов, выделенных на контактную работу с обучающимися (по видам учебных занятий) и на самостоятельную работу, приведен в таблице 2.

Таблица 2 – Общая трудоемкость дисциплины

|                                                                   | Форма<br>обуче-<br>ния | Часть<br>УП | Семестр (ОФО)  | Трудо-<br>емкость | O     | бъем контактной работы (час) |       |                    |    |     |                          |   |
|-------------------------------------------------------------------|------------------------|-------------|----------------|-------------------|-------|------------------------------|-------|--------------------|----|-----|--------------------------|---|
| Название ОПОП ВО                                                  |                        |             | или<br>курс    | (3.E.)            | Всего | Аудиторная                   |       | Внеауди-<br>торная |    | CPC | Форма<br>аттес-<br>тации |   |
|                                                                   |                        |             | (3ФО,<br>ОЗФО) |                   |       | лек.                         | прак. | лаб.               | ПА | КСР |                          |   |
| 11.03.02<br>Инфокоммуникационные<br>технологии и системы<br>связи | ОФО                    | Б1.В        | 7              | 3                 | 25    | 8                            | 16    | 0                  | 1  | 0   | 83                       | 3 |

## 4 Структура и содержание дисциплины (модуля)

### 4.1 Структура дисциплины (модуля) для ОФО

Тематический план, отражающий содержание дисциплины (перечень разделов и тем), структурированное по видам учебных занятий с указанием их объемов в соответствии с учебным планом, приведен в таблице 3.1

Таблица 3.1 – Разделы дисциплины (модуля), виды учебной деятельности и формы текущего контроля для ОФО

|   |                                                | Код ре-              | Код ре- Кол-во часов, отведенное на |       |     |     |                            |  |
|---|------------------------------------------------|----------------------|-------------------------------------|-------|-----|-----|----------------------------|--|
| № | Название темы                                  | зультата<br>обучения | Лек                                 | Практ | Лаб | CPC | Форма<br>текущего контроля |  |
| 1 | Распространение электромагнитных волн          | РД1                  | 4                                   | 8     | 0   | 43  | текущий тест               |  |
| 2 | Формирование изображения оптическими системами | РД1, РД1,<br>РД1     | 4                                   | 8     | 0   | 40  | текущий тест               |  |
|   | Итого по таблице                               |                      | 8                                   | 16    | 0   | 83  |                            |  |

#### 4.2 Содержание разделов и тем дисциплины (модуля) для ОФО

Тема 1 Распространение электромагнитных волн.

Содержание темы: Понятие о физическом поле. Поля потенциальные и вихревые. Электростатическое и магнитное поле. Электромагнитное поле. Уравнения Максвелла и их смысл. Решение уравнений Максвелла для изотропных сред: уравнение плоской волны, представление уравнения волны в комплексной форме. Волновое число и волновой вектор, скорость электромагнитных волн в вакууме и в среде, коэффициент преломления, волновой фронт, лучи. Сферические волны и уравнение для них. Объемная плотность энергии электрического и магнитного полей. Вектор Пойнтинга (с выводом). Интенсивность света. Правило нахождения интенсивности для волн, заданных в комплексной форме. Сущность эффекта Доплера. Вывод формулы для сдвига частоты. Стоячие электромагнитные волны как решение уравнений Максвелла. Граничные условия. Физическая причина возникновения стоячих электромагнитных волн. Стоячие волны как результат сложения встречных волн. Набег фазы электромагнитной волны при отражении. Линейная (плоская), эллиптическая и Отражение поляризация. Неполяризованный свет. преломление электромагнитных волн на границе раздела сред. Фазовые соотношения для явлений отражения и преломления. Вывод закона Снеллиуса. Поляризация электромагнитных волн при отражении. Угол Брюстера, вывод формулы для угла Брюстера. Полное внутреннее отражение. Вывод формулы для угла полного внутреннего отражения. Вывод формул Френеля для коэффициентов отражения и прохождения волны по амплитуде и по интенсивности. Явления полного внутреннего отражения и поляризации при отражении как следствие соотношений Френеля. Понятие немонохроматической волны. Волновые пакеты. Групповая и фазовая скорости. Вывод величины групповой скорости для случая двух частотных компонент. Явление дисперсии. Представление волнового пакета через интеграл

Фурье. Связь между шириной частотного спектра пакета и его протяженностью во времени. Нормальная и аномальная дисперсии. Распространение излучения в веществе. Волна поляризации. Вывод зависимости показателя преломления от оптической плотности среды. Молекулярная рефракция. Вывод зависимости показателя преломления от частоты света. Распространение света в условиях нормальной и аномальной дисперсии. Уравнение эйконала и уравнение луча. Принцип Гамильтона для лучевой траектории. Параксиальные лучи. Среда с квадратичным распределением показателя преломления. Эффекты Керра и Поккельса.

Формы и методы проведения занятий по теме, применяемые образовательные технологии: лекция, практические занятия.

Виды самостоятельной подготовки студентов по теме: подготовка к текущему и промежуточному тестированию.

Тема 2 Формирование изображения оптическими системами.

Содержание темы: Преломление света тонкими линзами. Расчет фокусного расстояния для линзы с заданным и радиусами кривизны. Отражение света сферическими зеркалами. Расчет фокусного расстояния для зеркала с заданным радиусом кривизны. Формирование изображений оптическими системами. Основные соотношения параксиальной оптики. Кардинальные точки и отрезки. Основные соотношения для системы линз. Реальные лучи в линзовых оптических системах. Виды аберраций. Монохроматические аберрации. Сферическая аберрация, кома. Астигматизм и кривизна изображения, дисторсия. Хроматическая аберрация. .

Формы и методы проведения занятий по теме, применяемые образовательные технологии: лекция, практические занятия.

Виды самостоятельной подготовки студентов по теме: подготовка к текущему и промежуточному тестированию.

# 5 Методические указания для обучающихся по изучению и реализации дисциплины (модуля)

# 5.1 Методические рекомендации обучающимся по изучению дисциплины и по обеспечению самостоятельной работы

В ходе изучения дисциплины «Технологии волоконной и интегральной оптики» студенты могут посещать аудиторные занятия (лекции, практические занятия, консультации). Особенность изучения дисциплины «Технологии волоконной и интегральной оптики» состоит в том, что все занятия проводятся в аудиториях и лабораториях Института автоматики и процессов управления Дальневосточного отделения Российской академии наук.

Особое место в овладении частью тем данной дисциплины может отводиться самостоятельной работе, при этом во время аудиторных занятий могут быть рассмотрены и проработаны наиболее важные и трудные вопросы по той или иной теме дисциплины, а второстепенные и более легкие вопросы, а также вопросы, специфичные для направления подготовки, могут быть изучены студентами самостоятельно.

В соответствии с учебным планом направления подготовки процесс изучения дисциплины может предусматривать проведение лекций, практических занятий, консультаций, а также самостоятельную работу студентов. Обязательным является проведение практических занятий в специализированных компьютерных аудиториях, оснащенных подключенными к центральному серверу терминалами или персональными компьютерами.

#### 5.2 Особенности организации обучения для лиц с ограниченными возможностями

#### здоровья и инвалидов

При необходимости обучающимся из числа лиц с ограниченными возможностями здоровья и инвалидов (по заявлению обучающегося) предоставляется учебная информация в доступных формах с учетом их индивидуальных психофизических особенностей:

- для лиц с нарушениями зрения: в печатной форме увеличенным шрифтом; в форме электронного документа; индивидуальные консультации с привлечением тифлосурдопереводчика; индивидуальные задания, консультации и др.
- для лиц с нарушениями слуха: в печатной форме; в форме электронного документа; индивидуальные консультации с привлечением сурдопереводчика; индивидуальные задания, консультации и др.
- для лиц с нарушениями опорно-двигательного аппарата: в печатной форме; в форме электронного документа; индивидуальные задания, консультации и др.

# 6 Фонд оценочных средств для проведения текущего контроля и промежуточной аттестации обучающихся по дисциплине (модулю)

В соответствии с требованиями ФГОС ВО для аттестации обучающихся на соответствие их персональных достижений планируемым результатам обучения по дисциплине (модулю) созданы фонды оценочных средств. Типовые контрольные задания, методические материалы, определяющие процедуры оценивания знаний, умений и навыков, а также критерии и показатели, необходимые для оценки знаний, умений, навыков и характеризующие этапы формирования компетенций в процессе освоения образовательной программы, представлены в Приложении 1.

### 7 Учебно-методическое и информационное обеспечение дисциплины (модуля)

- 0.1 Основная литература
- 0.2 Дополнительная литература
- 0.3 Ресурсы информационно-телекоммуникационной сети "Интернет", включая профессиональные базы данных и информационно-справочные системы (при необходимости):

Отсутствуют

8 Материально-техническое обеспечение дисциплины (модуля) и перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю), включая перечень программного обеспечения

### МИНОБРНАУКИ РОССИИ

# ВЛАДИВОСТОКСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

# КАФЕДРА ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ И СИСТЕМ

Фонд оценочных средств для проведения текущего контроля и промежуточной аттестации по дисциплине (модулю)

# ТЕХНОЛОГИИ ВОЛОКОННОЙ И ИНТЕГРАЛЬНОЙ ОПТИКИ

Направление и направленность (профиль)

11.03.02 Инфокоммуникационные технологии и системы связи. Интернет-вещей и оптические системы и сети

Год набора на ОПОП 2023

Форма обучения очная

## 1 Перечень формируемых компетенций

| Название ОПОП ВО, сокращенное                                        | Код и формулировка компетенци<br>и                                                                | Код и формулировка индикатора достижения компетенции                                                                        |
|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| 11.03.02 «Инфокомм уникационные техно логии и системы связ и» (Б-ИК) | ПКВ-3: Способен осуществлять развитие и модернизацию трансп ортных сетей и сетей передачи да нных | ПКВ-3.2к: Осуществляет развитие и модерни зацию сетей передачи данных с целью улучше ния качества и доступности услуг связи |

Компетенция считается сформированной на данном этапе в случае, если полученные результаты обучения по дисциплине оценены положительно (диапазон критериев оценивания результатов обучения «зачтено», «удовлетворительно», «хорошо», «отлично»). В случае отсутствия положительной оценки компетенция на данном этапе считается несформированной.

## 2 Показатели оценивания планируемых результатов обучения

**Компетенция ПКВ-3** «Способен осуществлять развитие и модернизацию транспортных сетей и сетей передачи данных»

Таблица 2.1 – Критерии оценки индикаторов достижения компетенции

|                                                                                                                               |                           | езульт                    | гаты обучения по дисциплине                                                                                                                                   |                                                                                                                                                                                      |  |
|-------------------------------------------------------------------------------------------------------------------------------|---------------------------|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Код и формулировка индикат ора достижения компетенции                                                                         | К<br>од<br>ре<br>з-<br>та | од и п ре з- Результат 3- |                                                                                                                                                               | Критерии оценивания результ атов обучения                                                                                                                                            |  |
| ПКВ-3.2к: Осуществляет раз витие и модернизацию сетей п ередачи данных с целью улуч шения качества и доступност и услуг связи | Р<br>Д<br>1               | Зн<br>ан<br>ие            | основных физических явлени ях и закономерностях, лежащ их в основе распространения оптического излучения                                                      | сформировавшееся системати ческое знание основных физи ческих явлениях и закономер ностях, лежащих в основе рас пространения оптического из лучения                                  |  |
|                                                                                                                               | Р<br>Д<br>1               | У<br>м<br>ен<br>ие        | анализировать потребности п<br>ользователей и планировать м<br>ероприятия по оптимизации<br>функциональной структуры о<br>птических сетей передачи дан<br>ных | сформировавшееся системати ческое умение анализировать потребности пользователей и планировать мероприятия по оптимизации функционально й структуры оптических сетей передачи данных |  |
|                                                                                                                               | Р<br>Д<br>1               | Н<br>ав<br>ы<br>к         | построения физико-математи ческих моделей процессов, св язанных с распространением света в различных средах                                                   | сформировавшиеся системати ческие навыки построения фи зико-математических моделе й процессов, связанных с расп ространением света в различных средах                                |  |

Таблица заполняется в соответствии с разделом 1 Рабочей программы дисциплины (модуля).

## 3 Перечень оценочных средств

Таблица 3 – Перечень оценочных средств по дисциплине (модулю)

| Контрол         | пируемые планируемые резу                                                                                            | Контролируемые темы                                   | Наименование оценочного средства и пр едставление его в ФОС |                              |  |  |
|-----------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------|------------------------------|--|--|
| льтаты обучения |                                                                                                                      | дисциплины                                            | Текущий контроль                                            | Промежуточная ат<br>тестация |  |  |
|                 |                                                                                                                      | Очная форма обучения                                  | I                                                           |                              |  |  |
| РД1             | Знание: основных физи ческих явлениях и закон                                                                        | 1.1. Распространение эл                               | Собеседование                                               | Реферат                      |  |  |
|                 | омерностях, лежащих в основе распространения оптического излучения                                                   | ектромагнитных волн                                   | Собеседование                                               | Тест                         |  |  |
|                 |                                                                                                                      | 1.2. Формирование изоб ражения оптическими с          | Собеседование                                               | Реферат                      |  |  |
|                 |                                                                                                                      | истемами                                              | Собеседование                                               | Тест                         |  |  |
| РД1             | Умение : анализировать<br>потребности пользовате                                                                     |                                                       | Практическая рабо та                                        | Практическая рабо та         |  |  |
|                 | лей и планировать меро приятия по оптимизации функциональной структ                                                  | 1.2. Формирование изоб                                | Практическая рабо та                                        | Тест                         |  |  |
|                 | уры оптических сетей пе редачи данных                                                                                | ражения оптическими с истемами                        | Собеседование                                               | Практическая рабо та         |  |  |
|                 |                                                                                                                      |                                                       | Собеседование                                               | Тест                         |  |  |
| РД1             | Навык: построения физ ико-математических мо делей процессов, связан ных с распространением света в различных среда х | 1.2. Формирование изоб ражения оптическими с истемами | Практическая рабо<br>та                                     | Практическая рабо<br>та      |  |  |

## 4 Описание процедуры оценивания

Качество сформированности компетенций на данном этапе оценивается по результатам текущих и промежуточных аттестаций при помощи количественной оценки, выраженной в баллах. Максимальная сумма баллов по дисциплине (модулю) равна 100 баллам.

|                          | Оценочное средство |                   |                         |         |       |  |
|--------------------------|--------------------|-------------------|-------------------------|---------|-------|--|
| Вид учебной деятельности | Тест               | Собеседова<br>ние | Практическ<br>ие работы | Реферат | Итого |  |
| Лекции                   | 10                 | 5                 |                         | 10      | 25    |  |
| Практические занятия     |                    |                   | 25                      |         | 25    |  |
| Самостоятельная работа   |                    |                   |                         | 10      | 10    |  |
| Промежуточная аттестация | 10                 | 5                 | 25                      |         | 40    |  |
| Итого                    | 20                 | 10                | 50                      | 20      | 100   |  |

Сумма баллов, набранных студентом по всем видам учебной деятельности в рамках дисциплины, переводится в оценку в соответствии с таблицей.

| Сумма баллов по дисциплине | Оценка по промежу<br>точной аттестации | Характеристика качества сформированности компетенции |
|----------------------------|----------------------------------------|------------------------------------------------------|
|----------------------------|----------------------------------------|------------------------------------------------------|

| от 91 до 100 | «зачтено» /<br>«отлично»                    | Студент демонстрирует сформированность дисциплинарных компетенций, об наруживает всестороннее, систематическое и глубокое знание учебного матер иала, усвоил основную литературу и знаком с дополнительной литературой, ре комендованной программой, умеет свободно выполнять практические задания, предусмотренные программой, свободно оперирует приобретенными знаниям и, умениями, применяет их в ситуациях повышенной сложности. |
|--------------|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| от 76 до 90  | «зачтено» /<br>«хорошо»                     | Студент демонстрирует сформированность дисциплинарных компетенций: ос новные знания, умения освоены, но допускаются незначительные ошибки, нет очности, затруднения при аналитических операциях, переносе знаний и умени й на новые, нестандартные ситуации.                                                                                                                                                                          |
| от 61 до 75  | «зачтено» /<br>«удовлетворительн<br>о»      | Студент демонстрирует сформированность дисциплинарных компетенций: в х оде контрольных мероприятий допускаются значительные ошибки, проявляетс я отсутствие отдельных знаний, умений, навыков по некоторым дисциплинарным компетенциям, студент испытывает значительные затруднения при оперир овании знаниями и умениями при их переносе на новые ситуации.                                                                          |
| от 41 до 60  | «не зачтено» /<br>«неудовлетворитель<br>но» | У студента не сформированы дисциплинарные компетенции, проявляется недо статочность знаний, умений, навыков.                                                                                                                                                                                                                                                                                                                          |
| от 0 до 40   | «не зачтено» /<br>«неудовлетворитель<br>но» | Дисциплинарные компетенции не сформированы. Проявляется полное или практически полное отсутствие знаний, умений, навыков.                                                                                                                                                                                                                                                                                                             |

## 5 Примерные оценочные средства

## 5.1 Примеры тестовых заданий

- 1. Спектральная полоса излучения инжекционного лазера имеет максимум  $\lambda$ =980 нм. Оцените ширину запрещенной зоны активной области лазера.
- 2. Ширина запрещенной зоны p-n перехода фотодиода 1.1 эВ. Оцените порог спектральной чувствительности p-i-n фотодиода.
- 3. Определите минимальный коэффициент усиления инжекционного лазера для обеспечения стационарной генерации, если резонатор имеет длину L=0.4 мм и образован естественными сколами кристалла с показателем преломления n=3.6.
- 4. Определите пороговый ток инжекционного лазера, имеющего параметры n=3.6,  $\Delta\lambda=20$  нм,  $\lambda max=900$  нм, длину резонатора 0.4 мм, внутреннюю квантовую эффективность излучательной рекомбинации 0.95, ширину гетероперехода 0.5 мкм. Температурной зависимостью порогового тока пренебречь.
- 5. Определите размеры области излучения на торцевой грани инжекционного лазера, если на расстоянии 1 м лазерный луч представляет из себя эллипс с осями a=0.4 м, b=0.01 м.
- 6. Определите величину напряжения смещения рабочей точки и амплитуду напряжения на продольном электрооптическом модуляторе на АДР кристалле для обеспечения глубины модуляции m=0.84.
- 7. Определите амплитудное значение тока для обеспечения глубины модуляции m= 0.84 на магнитооптическом модуляторе Y3Fe10O12 ( $\mu$ =200, C $\lambda$ = 300), имеющего размеры d=5 мм, L=10 мм. Число витков намотки на стержень равно 100.
- 8. Определить полосу пропускания волоконного световода со ступенчатым профилем показателя преломления, если диаметр сердцевины составляет 50 мкм, относительная разность показателя преломления 0.01, показатель преломления сердцевины 1.41, длина волны излучения  $\lambda$  мкм.
- 9. Определите полосу пропускания волновода с градиентным профилем показателя преломления, d = 50 мкм,  $\Delta = 0.01$ , n1 = 1.41,  $\lambda = 0.9$  мкм.
- 10. Определить число волноводных мод в волоконном световоде, если нормализованная частота равна 2.405.
- 11. Определите номер моды отсечки для волоконного световода с параметрами: n1=1.47 ,  $\Delta=0.005$ , d=12 мкм,  $\lambda=1$  мкм.
  - 12. Как работает линзовый элемент связи.

- 13. Нарисуйте решеточный элемент связи и опишите принцип его действия.
- 14. Оцените критический радиус изгиба Rc ступенчатого BC, если известно, что диаметром сердцевины 2a = 50 мкм, а ПП  $n_1 = 1.45$  и  $n_2 = 1.44$ .

Краткие методические указания

Промежуточный тест проводится в электронной форме во время последнего в учебном периоде практического занятия. Тест состоит из 10-30 тестовых заданий. На выполнение теста отводится 10-30 минут. Во время проведения теста использование литературы и других информационных ресурсов допускается только по предварительному согласованию с преподавателем.

Шкала оценки

| No | Баллы | Описание                                  |
|----|-------|-------------------------------------------|
| 5  | 19–20 | Процент правильных ответов от 95% до 100% |
| 4  | 16–18 | Процент правильных ответов от 80 до 94%   |
| 3  | 13–15 | Процент правильных ответов от 65 до 79%   |
| 2  | 9–12  | Процент правильных ответов от 45 до 64%   |
| 1  | 0–8   | Процент правильных ответов менее 45%      |

### 5.2 Перечень тем рефератов

- 1. Повторители
- 2. Оптические усилители.
- 3. Световоды.
- 4. Оптические кабели.
- 5. Мультиплексоры.
- 6. Элементы интегральной оптики.
- 7. Мультиплексоры.
- 8. Полупроводниковые лазеры.
- 9. Газовые лазеры.
- 10. Фотоприёмники.

Краткие методические указания

К защите допускаются работы с уровнем оригинальности не ниже 70. При оценке выполненного задания учитывается: Глубина и полнота раскрытия темы; Проработанность вопросов темы; Владение терминологическим аппаратом; Умение делать выводы и давать аргументированные ответы; Логичность и последовательность изложения материала.

Шкала оценки

| Оценка | Баллы | Описание                                                                                                                                                                                                                                                                  |
|--------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5      | 14-20 | Студент демонстрирует знания на итоговом уровне: свободно оперирует приобретенными знаниями, применяет их в ситуациях повышенной сложности.                                                                                                                               |
| 4      | 10-13 | Студент демонстрирует знания на среднем уровне: освоил основные положения, но допускаю тся незначительные ошибки, неточности, затруднения при аналитических операциях, перенос е знаний на новые, нестандартные ситуации.                                                 |
| 3      | 4-9   | Студент демонстрирует знания и навыки на базовом уровне: в ходе контрольных мероприяти й допускаются значительные ошибки, проявляется отсутствие отдельных знаний, испытываю тся значительные затруднения при оперировании знаниями и при их переносе на новые ситуа ции. |
| 2      | 1-3   | Студент демонстрирует знания на уровне ниже базового: проявляется недостаточность знани й.                                                                                                                                                                                |

### 5.3 Примерный перечень вопросов по темам

- 1. Каковы основные принципы управления оптическими сигналами в оптоэлектронных микромеханических устройствах?
- 2. Какие типы модуляции оптических сигналов могут быть получены с помощью оптоэлектронной микромеханики.
  - 3. Какие эффекты используют для управления оптическими сигналами в устройствах

интегральной оптики?

- 4. Какие преобразования оптических сигналов можно осуществить с помощью интерферометра Маха-Цендера?
- 5. Какой тип модуляции можно получить в волноводе при использовании эффекта Франца-Келдыша?
  - 6. В чем заключаются достоинства плазмонных волноводов и переключателей?
- 7. В чем заключаются достоинства и недостатки интегрально-оптических устройств на основе «классических» волноводов по сравнению с электронными интегральными устройствами?
- 8. В чем заключаются преимущества оптических методов передачи информации по сравнению с другими методами?
  - 9. В чем заключается принцип WDM-технологии передачи сигналов?
  - 10. Чем отличаются одномодовые волокна от многомодовых волокон?
  - 11. Каковы достоинства и недостатки усилителей оптических сигналов?
  - 12. Каковы достоинства и недостатки регенераторов оптических сигналов?
  - 13. Для каких целей в ВОСС используют демультиплексоры?
- 14. Каковы преимущества волоконно-оптических датчиков по сравнению сдатчиками других типов.
- 15. Какие физические величины могут быть измерены с помощью волоконно-оптических датчиков. Какие оптические эффекты при этом используются.
- 16. Какой режим работы волоконного световода называется одномодовым, а какой многомодовым?
  - 17. Чем определяется число направляемых мод в волоконных световодах?
  - 18. Как определить границу одномодового режима?
- 19. В каких пределах находятся величины фазовых и групповых скоростей направляемых мод и чем объясняется их зависимость от длины волны излучения?
- 20. Каково соотношение между диаметрами оболочки и сердцевины многомодового ступенчатого и одномодового световода? Чем оно определяется?
  - 21. Что такое критическая частота (длина волны) ОВ?
  - 22. Что такое характеристическая (нормированная) частота?
  - 23. Что такое длина волны отсечки?
  - 24. Какой тип волн распространяется в одномодовом оптическом волокне?
  - 25. Дайте определение моды.
  - 26. Перечислите типы волн, которые распространяются в многомодовом
  - 27. Что такое диаметр модового пятна?
  - 28. Чем обусловлено затухание сигналов в волоконных световодах?
- 29. Почему длины волн излучения =1,3 мкм, и особенно =1,55 мкм считаются наиболее перспективными в волоконно-оптических системах
  - 30. Дайте сравнительную оценку различных методов измерения потерь в ОВ.
- 31. Какими основными факторами ограничен динамический диапазон оптических рефлектометров?
- 32. Сколько милливатт имеет сигнал, мощность которого в относительных единицах составляет 0 дБм?
- 33. Увеличиваются, уменьшаются или остаются без изменений потери в оптическом волокне по мере увеличения частоты сигнала?
  - 34. На какой длине волны затухание минимально: 850, 1300 или 1550 нм?
  - 35. Опишите метод измерения потерь в волокне с помощью измерителя
  - 36. На чем основан принцип измерения затухания методом обратного
  - 37. Дайте определение коэффициента затухания ОВ. В каких единицах его измеряют?
- 38. Почему рекомендуется при входном контроле измерять коэффициент затухания с двух сторон?
- 39. Каково должно быть соотношение между ПП волноводного слоя, подложки и покровного слоя оптического ВВ, и почему?

- 40. Какие параметры волновода связывает дисперсионное соотношение?
- 41. В чем заключается режим отсечки волноводной моды? Запишите условие отсечки и зарисуйте соответствующее распределение поля.
  - 43. Опишите принцип действия призменного элемента связи.
  - 44. Почему волноводные моды имеют дискретный спектр?
  - 45. Что характеризует номер волноводной моды?
  - 46. Как экспериментально определить эффективные ПП волноводных мод?
- 47. Нарисуйте распределение по поперечному сечению ПП ступенчатого ВВ и градиентного ВВ с разными профильными функциями (экспонента, парабола, прямая). Как различаются оптические свойства указанных ВВ?
  - 48. При каких условиях в оптическом волноводе возникает волноводный режим?
  - 49. Исходя из каких соображений выбирают значение ПП n0 на поверхности ВВ?
  - 50. Дайте определение оптического ВС.
  - 51. Как классифицируются ВС?
  - 52. Перечислите виды излучательных потерь. Приведите примеры.
  - 53. В чем суть метода фазовых скоростей?
  - 54. Что такое числовая апертура ВС?
  - 55. Расскажите о видах поглощательных потерь.
  - 56. Перечислите основные виды потерь на рассеяние.
  - 57. В чем заключается суть теории связанных волн?
  - 58. Что такое сонаправленная и разнонаправленная связь волн?
- 59. Перечислите основные приближения и допущения, сделанные при описании исследуемого эффекта связи.
  - 60. Объясните физический смысл коэффициента связи.
- 61. Что такое длина связи и каково ее влияние на обмен энергией между связанными волнами?
  - 62. Что такое пространственная частота?
  - 63. Что такое фазовая, амплитудная и частотная модуляции?
  - 64. Назовите основные компоненты ВОЛС.
  - 65. Перечислите наиболее значимые оптические параметры ВС.
  - 66. Как маркируются ВС?
  - 67. Какими типы коннекторов Вам известны?
  - 68. В чем разница между стыковкой одномодовых и многомодовых ВС?
  - 69. Каковы основные источники погрешности в данном задании?
  - 70. Каково назначение аттенюатора?
  - 71. Что такое числовая апертура?
- 72. Предложите ситуации, в которых вариант стыковки ВС типа SM-SM наиболее оптимален. Аргументируйте ответ.
  - 73. В чем разница между непрерывной и импульсной модуляциями сигнала?
  - 74. Расскажите о трех видах дисперсии в ВС.
  - 75. Дайте определения удельной хроматической дисперсии.
  - 76. Что такое нулевая дисперсия?
  - 77. Каковы причины возникновения шум в сигнале?
  - 78. От чего зависит затухание в моделируемой линии?
  - 79. Для чего необходим расчет шумовой составляющей напряжения?
  - 80. Почему в одномодовых ВС модовая дисперсия отсутствует?
  - 81. Чем определяется наличие тепловых шумов в ВС?

Краткие методические указания

Контрольное мероприятие проводится в электронной или устной форме на 8-9 неделях учебного семестра. Тест состоит из 30 тестовых заданий. На выполнение собеседования отводится 2-10 минут на одного обучающегося. Во время проведения контрольного мероприятия использование литературы и других информационных ресурсов допускается только по предварительному согласованию с преподавателем.

Шкала оценки

| Оценка | Баллы | Описание                                                                                                                                                                                                                                                                  |
|--------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5      | 7-10  | Студент демонстрирует знания на итоговом уровне: свободно оперирует приобретенными знаниями, применяет их в ситуациях повышенной сложности.                                                                                                                               |
| 4      | 4-6   | Студент демонстрирует знания на среднем уровне: освоил основные положения, но допускаю тся незначительные ошибки, неточности, затруднения при аналитических операциях, перенос е знаний на новые, нестандартные ситуации.                                                 |
| 3      | 2-5   | Студент демонстрирует знания и навыки на базовом уровне: в ходе контрольных мероприяти й допускаются значительные ошибки, проявляется отсутствие отдельных знаний, испытываю тся значительные затруднения при оперировании знаниями и при их переносе на новые ситуа ции. |
| 2      | 1     | Студент демонстрирует знания на уровне ниже базового: проявляется недостаточность знани й.                                                                                                                                                                                |

## 5.4 Примеры заданий для выполнения практических работ

- Тема 1. Измерение основных параметров ретранслятора, повторителя, оптического усилителя.
  - Тема 2. Измерение параметров световодов.
  - Тема 3. Измерение параметров оптических кабелей.
  - Тема 4. Измерение параметров модулей ВОЛС.

Краткие методические указания

После выполнения каждой практической работы студент должен представить отчет о ее выполнении, а также, по указаниям преподавателя, выполнить дополнительные задания по теме практической работы.

**Оценивание выполнения практической работы:** Базовая оценка - 10 баллов. Если при выполнении практических действий студент допустил ошибку, которая не позволяет правильно измерить параметры цепи и построить соответствующую характеристику, то студенту начисляется — минус 5 баллов (например, студент перепутал порядок измерения, не владеет теоретическим материалом, не изучил руководства по эксплуатации и паспорта измерительных приборов и т. д).

Если студент выполнил практические действия в строгом соответствии с методикой выполнения практической работы (соответствие по содержанию операций, соответствие по последовательности операций), то ему выставляется 5 баллов.

За каждую ошибку от 5 баллов отнимается: по 2 балла - за ошибку в полноте рабочей операции; по 1 баллу - за ошибку в последовательности операции. Оформление отчёта не по правилам, принятым СТО ВВГУ - минус 1 балл.

Шкала оценки

| № | Баллы | Описание                                                                                                                                                                                                                                                                                                       |
|---|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5 | 43–50 | Студент демонстрирует умения на итоговом уровне: умеет свободно выполнять практически е задания, предусмотренные программой, свободно оперирует приобретенными умениями, п рименяет их в ситуациях повышенной сложности.                                                                                       |
| 4 | 31–42 | Студент демонстрирует умения на среднем уровне: освоил основные умения, но допускаются незначительные ошибки, неточности, затруднения при аналитических операциях, переносе у мений на новые, нестандартные ситуации.                                                                                          |
| 3 | 19–30 | Студент демонстрирует умения и навыки на базовом уровне: в ходе контрольных мероприяти й допускаются значительные ошибки, проявляется отсутствие отдельных умений, навыков по дисциплинарной компетенции, испытываются значительные затруднения при оперировании умениями и при их переносе на новые ситуации. |
| 2 | 13–18 | Студент демонстрирует умения и навыки на уровне ниже базового: проявляется недостаточно сть умений и навыков.                                                                                                                                                                                                  |
| 1 | 0–12  | Студентом проявляется полное или практически полное отсутствие умений и навыков.                                                                                                                                                                                                                               |