МИНОБРНАУКИ РОССИИ

ВЛАДИВОСТОКСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ КАФЕДРА ТРАНСПОРТНЫХ ПРОЦЕССОВ И ТЕХНОЛОГИЙ

Рабочая программа дисциплины (модуля) ОСНОВЫ ТЕОРИИ ТРАНСПОРТНЫХ ПРОЦЕССОВ И СИСТЕМ

Направление и направленность (профиль) 23.03.01 Технология транспортных процессов. Цифровая логистика на транспорте

 Γ од набора на ОПОП 2024

Форма обучения заочная

Владивосток 2024

Рабочая программа дисциплины (модуля) «Основы теории транспортных процессов и систем» составлена в соответствии с требованиями ФГОС ВО по направлению подготовки 23.03.01 Технология транспортных процессов (утв. приказом Минобрнауки России от 07.08.2020г. №911) и Порядком организации и осуществления образовательной деятельности по образовательным программам высшего образования — программам бакалавриата, программам специалитета, программам магистратуры (утв. приказом Минобрнауки России от 06.04.2021 г. N245).

Составитель(и):

Киселева Е.В., кандидат технических наук наук, доцент, Кафедра транспортных процессов и технологий, Kiseleva.EV@vvsu.ru

Утверждена на заседании кафедры транспортных процессов и технологий от 09.04.2024, протокол № 7

СОГЛАСОВАНО:

Заведующий кафедрой (разработчика)

Гриванова О.В.

ДОКУМЕНТ ПОДПИСАН ЭЛЕКТРОННОЙ ПОДПИСЬЮ

 Сертификат
 1575905743

 Номер транзакции
 0000000000D67C57

 Владелец
 Гриванова О.В.

1 Цель, планируемые результаты обучения по дисциплине (модулю)

Цель дисциплины — подготовка обучающихся к решению сложных проблем, требующих использования методологии системного анализа транспортных систем и процессов и формированию умений определять параметры оптимизации логистических транспортных цепей и звеньев с учетом критериев оптимальности

Задачи дисциплины:

научить определять потребности в: развитии транспортной сети; подвижном составе с учетом организации и технологии перевозок, требований обеспечения безопасности перевозочного процесса;

научить анализировать существующие и разрабатывать модели перспективных логистических процессов транспортных предприятий; научить выполнять оптимизационные расчеты основных логистических процессов

Планируемыми результатами обучения по дисциплине (модулю), являются знания, умения, навыки. Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы, представлен в таблице 1.

Таблица 1 – Компетенции, формируемые в результате изучения дисциплины (модуля)

Название	Код и	Код и формулировка		Результаты обучения по дисциплине
ОПОП ВО, сокращенное	формулировка компетенции	индикатора достижения компетенции	Код резуль тата	Формулировка результата
23.03.01 «Технология транспортных процессов» (Б-ТТ)				

В процессе освоения дисциплины решаются задачи воспитания гармонично развитой, патриотичной и социально ответственной личности на основе традиционных российских духовно-нравственных и культурно-исторических ценностей, представленные в таблице 1.2.

Таблица 1.2 – Целевые ориентиры воспитания

Воспитательные задачи	Формирование ценностей	Целевые ориентиры			
1 Формирование гражданской позиции и патриотизма					
2 Формировани	е духовно-нравственных цен	ностей			
3 Формирование научного мировоззрения и культуры мышления					

4 Формирование коммуникативных навыков и культуры общения					

2 Место дисциплины (модуля) в структуре ОПОП

дисциплина изучается в 4 семестре и относится к дисциплинам обязательной части блока Б1 (Б.1.Б.25)

3. Объем дисциплины (модуля)

Объем дисциплины (модуля) в зачетных единицах с указанием количества академических часов, выделенных на контактную работу с обучающимися (по видам учебных занятий) и на самостоятельную работу, приведен в таблице 2.

Таблица 2 – Общая трудоемкость дисциплины

	Семес	Семестр	Трудо- емкость	Ооъем контактной расоты (час)								
Название ОПОП ВО	ODV/II-		(ОФО) или курс (ЗФО, ОЗФО) (3.Е.)	(3.E.) Bce	D	Аудиторная			Внеауди- торная		СРС	Форма аттес- тации
		03			Beero	лек.	прак.	лаб.	ПА	КСР	?	
23.03.01 Технология транспортных процессов	3ФО	Б1.Б	2	4	13	8	4	0	1	0	131	Э

4 Структура и содержание дисциплины (модуля)

4.1 Структура дисциплины (модуля) для ЗФО

Тематический план, отражающий содержание дисциплины (перечень разделов и тем), структурированное по видам учебных занятий с указанием их объемов в соответствии с учебным планом, приведен в таблице 3.1

Таблица 3.1 – Разделы дисциплины (модуля), виды учебной деятельности и формы текущего контроля для $3\Phi O$

		Код ре-	Ко.	л-во часов,	Форма		
№	Название темы	зультата обучения	Лек	Практ	Лаб	CPC	текущего контроля
1	Основы теории систем	РД1	2	1	0	34	экзамен
2	Транспортные системы	РД1	2	1	0	34	экзамен
3	Исследование транспортных систем	РД1	2	1	0	34	экзамен
4	Развитие транспортных систем	РД1	2	1	0	33	экзамен
	Итого по таблице		8	4	0	135	

4.2 Содержание разделов и тем дисциплины (модуля) для ЗФО

Тема 1 Основы теории систем.

Содержание темы: Введение в теорию систем. Понятие и свойства систем. Понятие о системном подходе. Системотехника.

Формы и методы проведения занятий по теме, применяемые образовательные технологии: лекция, практическая работа, презентация, дискуссия.

Виды самостоятельной подготовки студентов по теме: доклад, сообщение.

Тема 2 Транспортные системы.

Содержание темы: Транспорт в современном мире. Особенности транспортных систем. Транспортные сети. Транспортные процессы .

Формы и методы проведения занятий по теме, применяемые образовательные технологии: лекция, практическая работа, презентация, дискуссия.

Виды самостоятельной подготовки студентов по теме: доклад, сообщение.

Тема 3 Исследование транспортных систем.

Содержание темы: Цели и задачи исследования. Модели и моделирование. Модели спроса на транспортное обслуживание. Имитационное моделирование транспортных систем. Объектно-ориентированный подход к моделированию транспортных систем. Геоинформационные системы. Оценка эффективности транспортных систем.

Формы и методы проведения занятий по теме, применяемые образовательные технологии: лекция, практическая работа, презентация, дискуссия.

Виды самостоятельной подготовки студентов по теме: доклад, сообщение.

Тема 4 Развитие транспортных систем.

Содержание темы: Потребности современной экономики и общества в транспортных услугах. Направления развития транспортных систем.

Формы и методы проведения занятий по теме, применяемые образовательные технологии: лекция, практическая работа, презентация, дискуссия.

Виды самостоятельной подготовки студентов по теме: доклад, сообщение.

5 Методические указания для обучающихся по изучению и реализации дисциплины (модуля)

5.1 Методические рекомендации обучающимся по изучению дисциплины и по обеспечению самостоятельной работы

Обязательным условием успешного изучения дисциплины является самостоятельная работа студентов вне аудитории. Студенты должны работать с рекомендованными источниками информации, готовиться к обсуждениям проблемных вопросовдисциплины на практических занятиях, выполнять индивидуальные задания

Краткие методические указания В ходе лекционных занятий необходимо вести конспектирование учебного материала. При этом обращать внимание на определения и формулировки, раскрывающие содержание тех или иных понятий, явлений и процессов, научные выводы и практические рекомендации. При необходимости, можно задавать преподавателю вопросы с целью уточнения теоретических положений, разрешения спорных ситуаций. Необходимо помнить, что на лекции обычно рассматривается не весь материал, а только его часть. Остальная его часть восполняется в процессе самостоятельной работы. После каждой лекции преподаватель дает перечень тем на самостоятельное изучение (если это предусмотрено учебным планом). При реализации образовательного процесса в дистанционном формате используются технологии: "Виртуальная аудитория" в личных кабинетах преподавателя и студента, команды в системе Microsoft Teams. В ходе подготовки к практическим работам необходимо изучить учебнометодические материалы

и, при необходимости, основную и дополнительную литературу. При этом следует учесть рекомендации преподавателя и требования учебной программы. Особое внимание при этом необходимо обратить на содержание основных положений и выводов, объяснение явлений и фактов, уяснение практического приложения рассматриваемых теоретических вопросов. Типовой алгоритм действий при проведении практической работы обычно приводится в соответствующих учебно-методических материалах. При необходимости, преподаватель и обучающиеся могут внести в него изменения и дополнения. В ходе выполнения практической работы обучающиеся проводят необходимые расчеты, заполняют таблицы, строят графики и завершают написание отчета выводами, содержащими собственный взгляд на проблему. При реализации образовательного процесса в дистанционном формате используются технологии: "Виртуальная аудитория" в личных кабинетах преподавателя и студента, команды в системе Microsoft Teams.

5.2 Особенности организации обучения для лиц с ограниченными возможностями здоровья и инвалидов

При необходимости обучающимся из числа лиц с ограниченными возможностями здоровья и инвалидов (по заявлению обучающегося) предоставляется учебная информация в доступных формах с учетом их индивидуальных психофизических особенностей:

- для лиц с нарушениями зрения: в печатной форме увеличенным шрифтом; в форме электронного документа; индивидуальные консультации с привлечением тифлосурдопереводчика; индивидуальные задания, консультации и др.
- для лиц с нарушениями слуха: в печатной форме; в форме электронного документа; индивидуальные консультации с привлечением сурдопереводчика; индивидуальные задания, консультации и др.
- для лиц с нарушениями опорно-двигательного аппарата: в печатной форме; в форме электронного документа; индивидуальные задания, консультации и др.

6 Фонд оценочных средств для проведения текущего контроля и промежуточной аттестации обучающихся по дисциплине (модулю)

В соответствии с требованиями ФГОС ВО для аттестации обучающихся на соответствие их персональных достижений планируемым результатам обучения по дисциплине (модулю) созданы фонды оценочных средств. Типовые контрольные задания, методические материалы, определяющие процедуры оценивания знаний, умений и навыков, а также критерии и показатели, необходимые для оценки знаний, умений, навыков и характеризующие этапы формирования компетенций в процессе освоения образовательной программы, представлены в Приложении 1.

7 Учебно-методическое и информационное обеспечение дисциплины (модуля)

7.1 Основная литература

- 1. Горев, А.Э. Теория транспортных процессов и систем: учебник для вузов / А.Э. Горев. 3-е изд., испр. и доп. Москва: Издательство Юрайт, 2025. 193 с. (Высшее образование). ISBN 978-5-534-12797-3. Текст: электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/560637 (дата обращения: 12.03.2025).
- 2. Кулев, А. В. Теория транспортных процессов и систем: грузовые и пассажирские перевозки: учебное пособие / А. В. Кулев, М. В. Кулев. Орел: ОГУ имени И.С.

- Тургенева, 2023. 156 с. ISBN 978-5-9929-1344-6. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/409538 (дата обращения: 22.01.2025). Режим доступа: для авториз. пользователей.
- 3. Лосин, Л. А. Теория транспортных систем: учебное пособие / Л. А. Лосин. Санкт-Петербург: ПГУПС, 2024. 61 с. ISBN 978-5-7641-2005-8. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/439550 (дата обращения: 22.01.2025). Режим доступа: для авториз. пользователей.

7.2 Дополнительная литература

- 1. Гарипова, Г.Р. Моделирование логистических систем: учеб. пособие / Казан. нац. исслед. технол. ун-т; Г.Р. Гарипова. Казань: КНИТУ, 2022. 96 с. ISBN 978-5-7882-3212-6. URL: https://lib.rucont.ru/efd/870359 (дата обращения: 19.01.2025)
- 2. Горбачев, А. М. Математическое моделирование транспортных автоматизированных технологических комплексов : учебное пособие / А. М. Горбачев, Н. Ю. Воробей. Санкт-Петербург : ПГУПС, 2022. 48 с. ISBN 978-5-7641-1759-1. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/264632 (дата обращения: 22.01.2025). Режим доступа: для авториз. пользователей.
- 3. Добровольская, А. А. Теория транспортных процессов и систем. Паромные маршруты и морские пассажирские порты : учебное пособие / А. А. Добровольская, Н. Н. Майоров, В. А. Фетисов. Санкт-Петербург : ГУАП, 2022. 99 с. ISBN 978-5-8088-1756-2. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/340940 (дата обращения: 22.01.2025). Режим доступа: для авториз. пользователей.

7.3 Ресурсы информационно-телекоммуникационной сети "Интернет", включая профессиональные базы данных и информационно-справочные системы (при необходимости):

- 1. Образовательная платформа "ЮРАЙТ"
- 2. Электронно-библиотечная система "ЛАНЬ"
- 3. Электронно-библиотечная система "РУКОНТ"
- 4. Open Academic Journals Index (OAJI). Профессиональная база данных Режим доступа: http://oaji.net/
- 5. Президентская библиотека им. Б.Н.Ельцина (база данных различных профессиональных областей) Режим доступа: https://www.prlib.ru/
- 6. Информационно-справочная система "Консультант Плюс" Режим доступа: http://www.consultant.ru/
- 8 Материально-техническое обеспечение дисциплины (модуля) и перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю), включая перечень программного обеспечения

Основное оборудование:

- Мультимедийный комплект:Проектор CASIO XJ-V2/Потолоч крепление Kromax Projector, настен розетка HDMI, экран Lumien, EcoPicture, кабель №1 и №2
 - Мультимедийный проектор №1 Casio XJ-210FN

Программное обеспечение:

- •□ Acrobat
- Microsoft Office 2010 Standart

МИНОБРНАУКИ РОССИИ

ВЛАДИВОСТОКСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ КАФЕДРА ТРАНСПОРТНЫХ ПРОЦЕССОВ И ТЕХНОЛОГИЙ

Фонд оценочных средств для проведения текущего контроля и промежуточной аттестации по дисциплине (модулю)

ОСНОВЫ ТЕОРИИ ТРАНСПОРТНЫХ ПРОЦЕССОВ И СИСТЕМ

Направление и направленность (профиль) 23.03.01 Технология транспортных процессов. Цифровая логистика на транспорте

 Γ од набора на ОПОП 2024

Форма обучения заочная

Владивосток 2024

1 Перечень формируемых компетенций

Название ОПОП ВО, сокращенное	Код и формулировка компетенци и	Код и формулировка индикатора достижения компетенции
23.03.01 «Технология транспортных процес сов» (Б-ТТ)		

Компетенция считается сформированной на данном этапе в случае, если полученные результаты обучения по дисциплине оценены положительно (диапазон критериев оценивания результатов обучения «зачтено», «удовлетворительно», «хорошо», «отлично»). В случае отсутствия положительной оценки компетенция на данном этапе считается несформированной.

2 Показатели оценивания планируемых результатов обучения

Таблица заполняется в соответствии с разделом 1 Рабочей программы дисциплины (модуля).

3 Перечень оценочных средств

Таблица 3 – Перечень оценочных средств по дисциплине (модулю)

Контролируемые планируемые рез ультаты обучения		Контролируемые темы д	Наименование оценочного средства и пр едставление его в ФОС			
		исциплины	Текущий контроль	Промежуточная ат тестация		
		Заочная форма обучени	пя			
РД1	Знание: программное о беспечение для решения задач моделирования тр	1.1. Основы теории сист ем	Практическая рабо та	Доклад, сообщени е		
	анспортных процессов и систем	1.4. Развитие транспорт ных систем	Практическая рабо та	Доклад, сообщени е		
РД1	Умение: использует пр ограммное обеспечение для решения задач моде лирования транспортны х процессов и систем.	1.3. Исследование транс портных систем	Практическая рабо та	Доклад, сообщени е		
РД1	Навык: использования программного обеспече ния для решения задач моделирования транспо ртных процессов и сист ем.	1.2. Транспортные систе мы	Практическая рабо та	Доклад, сообщени е		

4 Описание процедуры оценивания

Качество сформированности компетенций на данном этапе оценивается по результатам текущих и промежуточных аттестаций при помощи количественной оценки,

выраженной в баллах. Максимальная сумма баллов по дисциплине (модулю) равна 100 баллам.

Виды учебно й деятельнос ти	Собеседован ие	Практи ческая работа 1	Практи ческая работа 2	Практи ческая работа 3	Практи ческая работа 4	Практи ческая работа 5	Практи ческая работа 6 и 7	ДЗ	Итого
Лекции	10								10
Практическа я работа		10	10	10	10	10	10		60
Самостоятел ьная работа								20	20
Промежуточ ная аттестац ия								10	10
Итого									100

Сумма баллов, набранных студентом по всем видам учебной деятельности в рамках дисциплины, переводится в оценку в соответствии с таблицей.

Сумма балло в по дисципли не	Оценка по промеж уточной аттестаци и	Характеристика качества сформированности компетенции
от 91 до 100	«зачтено» / «отлично»	Студент демонстрирует сформированность дисциплинарных компетенций, обна руживает всестороннее, систематическое и глубокое знание учебного материала, усвоил основную литературу и знаком с дополнительной литературой, рекоме ндованной программой, умеет свободно выполнять практические задания, пред усмотренные программой, свободно оперирует приобретенными знаниями, уме ниями, применяет их в ситуациях повышенной сложности.
от 76 до 90	«зачтено» / «хорошо»	Студент демонстрирует сформированность дисциплинарных компетенций: осно вные знания, умения освоены, но допускаются незначительные ошибки, неточн ости, затруднения при аналитических операциях, переносе знаний и умений на н овые, нестандартные ситуации.
от 61 до 75	«зачтено» / «удовлетворитель но»	Студент демонстрирует сформированность дисциплинарных компетенций: в хо де контрольных мероприятий допускаются значительные ошибки, проявляется о тсутствие отдельных знаний, умений, навыков по некоторым дисциплинарным к омпетенциям, студент испытывает значительные затруднения при оперировани и знаниями и умениями при их переносе на новые ситуации.
от 41 до 60	«не зачтено» / «неудовлетворите льно»	У студента не сформированы дисциплинарные компетенции, проявляется недос таточность знаний, умений, навыков.
от 0 до 40	«не зачтено» / «неудовлетворите льно»	Дисциплинарные компетенции не сформированы. Проявляется полное или прак тически полное отсутствие знаний, умений, навыков.

5 Примерные оценочные средства

5.1 Перечень тем докладов, сообщений

Вопросы для самостоятельной работы

- 1. Транспортные системы как необходимое условие функционирования хозяйственных и социальных систем.
- 2. Проблемы функционирования транспортного комплекса в условиях рыночной экономики
 - 3. Понятие «система». Подходы к определению термина «система»
 - 4. Экономические законы деятельности систем.
- 5. Понятие элемента, структуры и функции систем. Цель системы. Основные направления деятельности транспортных систем в рыночных условиях.
- 6. Закономерности построения и развития систем. Структурная и функциональная пелостность систем.

- 7. Методологические подходы к проектированию систем. Цели и задачи системного проектирования.
 - 8. Понятие транспортной системы, её особенности и функции.
 - 9. Классификации транспортных систем
 - 10. Системный подход к описанию транспортных систем. Уровни описания.
- 11. Взаимодействие транспортной системы и внешней среды. Цель и ограничения системы
- 12. Характеристики процесса функционирования транспортных систем. Условия эффективного функционирования
- 13. Понятие автотранспортного процесса. Система показателей для оценки эффективности использования парка подвижного состава.
- 14. Основные понятия моделирования транспортных систем. Классификации моделей
 - 15. Виды неопределённостей транспортного процесса и способы их описания.
 - 16. Имитационное моделирование. Этапы разработки имитационных моделей
- 17. Постановка задачи оптимизации. Математическая формулировка оптимизационных задач
- 18. Транспортная задача линейного программирования и её применение. Математическая модель задачи. 19. Понятие «Системотехника». Структура системотехнического комплекса
 - 20. Классификация транспортных сетей. Модели транспортных сетей
 - 21. Понятие «Интеллектуальная транспортная система».

Краткие методические указания

По мере освоения учебного материала по тематике дисциплины предусмотрено выполнение самостоятельной работы студентами по сбору и обработки статистического материала для написания докладов и сообщений, что позволяет углубить и закрепить конкретные знания, полученные на практических занятиях. Занятия проводится в специализированной аудитории, оснащенной современным оборудованием и необходимыми техническими средствами обучения. Для изучения и полного освоения программного материала по дисциплине используется учебная, справочная и другая литература, рекомендуемая настоящей программой, а также профильные периодические издания.

В рамках реализации компетентностного подхода в учебном процессе с целью формирования и развития профессиональных навыков обучающихся при проведении практических занятий широко используются активные и интерактивные формы обучения (разбор конкретных ситуаций) в сочетании с внеаудиторной работой.

Самостоятельная работа студентов (СРС) складывается из таких видов работ как работа с конспектом лекций; изучение материала по учебникам, справочникам, видеоматериалам и презентациям, а также прочим достоверным источникам информации; подготовка к экзамену.

Для закрепления материала лекций достаточно, перелистывая конспект или читая его, мысленно восстановить прослушанный материал. При необходимости обратиться к рекомендуемой учебной и справочной литературе, записать непонятные моменты в вопросах для уяснения их на предстоящем занятии. Подготовка к практическим занятиям. Этот вид самостоятельной работы состоит из нескольких этапов:

- 1) повторение изученного материала. Для этого используются конспекты лекций, рекомендованная основная и дополнительная литература;
- 2) углубление знаний по теме. Необходимо имеющийся материал в лекциях, учебных пособиях дифференцировать в соответствии с пунктами плана практического занятия. Отдельно выписать неясные вопросы, термины. Лучше это делать на полях конспекта лекции или учебного пособия. Уточнение надо осуществить при помощи справочной литературы (словари, энциклопедические издания и т.д.);

3) составление развернутого плана выступления, или проведения расчетов, решения задач, упражнений и т.д.

Доклад – это устное выступление на заданную тему.

В учебных заведениях время доклада, как правило, составляет 7-20 минут.

Цели доклада

- 1. Научиться убедительно и кратко излагать свои мысли в устной форме. (Эффективно продавать свой интеллектуальный продукт).
- 2. Донести информацию до слушателя, установить контакт с аудиторией и получить обратную связь.

План и содержание доклада

Важно при подготовке доклада учитывать три его фазы: мотивацию, убеждение, побуждение.

В первой фазе доклада рекомендуется использовать:

- риторические вопросы;
- актуальные местные события;
- личные происшествия;
- истории, вызывающие шок;
- цитаты, пословицы;
- возбуждение воображения;
- оптический или акустический эффект;
- неожиданное для слушателей начало доклада.

Как правило, используется один из перечисленных приемов.

Главная цель фазы открытия (мотивации) — привлечь внимание слушателей к докладчику, поэтому длительность ее минимальна.

Ядром хорошего доклада является информация. Она должна быть новой и понятной. Важно в процессе доклада не только сообщить информацию, но и убедить слушателей в правильности своей точки зрения.

Для убеждения следует использовать: сообщение о себе кто? обоснование необходимости доклада почему? доказательство кто? когда? где? сколько? пример берем пример с... сравнение это так же, как... проблемы что мешает?

Третья фаза доклада должна способствовать положительной IIIкала оценки

Hikara oyenka		
Оценка уровня сформированности компетенций для	Критерии оценив	Итоговая оценка за промежут
выполнения самостоятельной работы(доклад /сооб	ания	очную
щение) (до 20 баллов)		аттестацию
Учебный материал освоен студентом в полном объе ме, легко ориентируется в материале, полно и аргум ентировано отвечает на дополнительные вопросы, и злагает материал логически последовательно, делае т самостоятельные выводы, умозаключения, демонс трирует · 15-20 19 кругозор, использует материал и з дополнительных источников, интернет ресурсы. С ообщение носит исследовательский характер. Речь характеризуется эмоциональной выразительностью,	20	Зачтено/ отлично
четкой дикцией, стилистической и орфоэпической г рамотностью. Использует наглядный материал (пре зентация)		
По своим характеристикам сообщение студента соо тветствует характеристикам отличного ответа (см. выше), но студент может испытывать некоторые затруднения в ответах на дополнительные вопросы, до пускать некоторые погрешности в речи. Отсутствуе т исследовательский компонент в сообщении.	15	Зачтено/ хорошо
Студент испытывал трудности в подборе материала , его структурировании. Пользовался, в основном, у чебной литературой, не использовал дополнительные источники информации. Не может ответить на д ополнительные вопросы по теме сообщения. Матер иал излагает не последовательно, не устанавливает	10	Зачтено/ удовлетворительно

логические связи, затрудняется в формулировке вы водов. Допускает стилистические и орфоэпические ошибки.		
Сообщение студентом подготовлено по одному ист очнику информации либо не соответствует теме	5	Незачтено
Сообщение студентом не подготовлено	0	Незачтено

Примеры заданий для выполнения практических работ

ПРАКТИЧЕСКАЯ РАБОТА

Построение математических моделей транспортных процессов и систем

Цель работы

Приобрести навыки построения математических моделей транспортных процессов и систем

Задача практической работы

Отработать и закрепить умения записывать взаимосвязь показателей задачи линейного программирования в виде математической модели.

Пример 1. Построить математическую модель задачи.

Небольшая фирма производит два типа машинного масла. Фирма может продать всю продукцию, которая будет произведена, однако объем производства ограничен количеством основного ингредиента и производственной мощностью имеющегося оборудования. Для производства 1 л первого типа масла требуется 0,02 ч работы оборудования, а для производства 1 л второго типа масла — 0,04 ч. Расход основного ингредиента составляет 0,01 кг и 0,04 кг на 1 л первого и второго типов масла соответственно. Ежедневно в распоряжении фирмы имеется 24 ч рабочего времени оборудования и 16 кг основного ингредиента. Доход фирмы составляет 2 рубля за 1 л первого типа масла и 4 рубля за 1 л второго типа масла. Сколько продукции каждого вида следует производить ежедневно, если цель фирмы состоит в максимизации ежедневного дохода?

Краткие методические указания

Л

Порядок выполнения работы

- 1) Получить задание (Приложение А).
- 2) Изучить необходимые теоретические сведения по курсу (основные определения, понятия, формулировки теорем, формулы), используемые при решении задач. Изложение этих сведений иллюстрируется решенными примерами, ответить на контрольные вопросы.
- 3) Определить параметры управления, значения которых нужно получить в пределах существующих ограничений.
 - 4) Определить цели и ограничения на ресурсы.
 - 5) Описать цели через параметры управления (построение целевой функции).
- 6) Описать ограничения через параметры управления (построение системы ограничений).
- 7) Подготовить аналитический отчёт, содержащий чёткое (пошаговое) описание выполненной работы, расчёты, визуальное представление полученных результатов.
 - 8) Защитить работу.

Содержание отчета к работе

Отчет должен содержать:

- цель работы;

- теоретический материал, содержащий основные понятия, формулы и необходимые пояснения к ним;
 - условие задачи;
 - исходные данные;
- этапы построения математической модели с пояснениями (использовать примеры построения математических моделей из теоретической части работы).

Получили математическую модель задачи:

- 1) целевая функция:
- 2) система ограничений:

условие неотрицательности переменных:

Шкала оценки

Оценка уровня сформированности компетенций для в ыполнения практической работы (до 10 баллов)	Критерии оцен ивания	Итоговая оценка за промеж уточную
Работа выполнена полностью. Нет ошибок в логическ их рассуждениях. Возможно наличие одной неточнос ти или описки, не являющихся следствием незнания и ли непонимания учебного материала. Студент показа л полный объем знаний, умений в освоении пройденных тем и применение их на практике.	10	Зачтено/ отлично
Работа выполнена полностью, но обоснования шагов решения недостаточны. Допущена одна ошибка или д ва-три недочета	8	Зачтено/ хорошо
Допущены более одной ошибки или более двух-трех недочетов. Неточности в чертежах или рисунках.	6	Зачтено/ удовлетворительн о
Работа выполнена не полностью. Допущены грубые о шибки. Работа выполнена не самостоятельно	3	Незачтено
Работа не сдана	0	Незачтено

Определение оптимального плана перевозки контейнеров для обслуживания линейных грузопотоков

Аннотация: в докладе рассматривается совершенствование доставки грузов автомобильным транспортом на морскую судоходную линию на основе применения транспортной задачи линейного программирования.

Ключевые слова: контейнерный грузопоток, судоходная линия, букинг, слоты, агентирование, транспортная задача, линейное программирование, целевая функция, ограничения.

В настоящее время в мировом экономическом пространстве происходят изменения технологий контейнеризации грузопотоков [1]. На данный момент на рынке линейных перевозок большая конкуренция, особенно в портах Приморья (г. Владивосток и пос. Врангель). Для клиента намного проще работать с одной компанией, избегая множества посредников, между линией и отправителем. Предметом исследования явилось построение оптимального маршрута доставки контейнеров от грузоотправителей в порты линии. Следуя этому, необходимо оптимизировать взаимодействие целей наземной транспортной инфраструктуры и судоходной линии в современных условиях международной торговли, предоставив грузоотправителям услуги по доставке грузов в порты, минуя посредника, введя составляющую по привлечению груза (букинга) на основе инланд-агентирования в структуру линии [2]. На рис.1 показаны схемы взаимодействия линии с грузовладельцами.

У линии ONE на территории Приморского края есть четыре крупных клиента, которые занимаются экспортом дерева и пиломатериалов в 40-футовых и 20-футовых контейнерах. Данным клиентам необходимы бесперебойные и постоянные отгрузки на каждом рейсе. Внедрение услуг автомобильных контейнерных перевозок поможет клиентам вовремя доставлять груженные контейнера в порт отправления. На рис. 2 показаны возможные маршруты движения контейнеров от грузоотправителей в порты линии.

Рис. 1. Схема взаимодействия линии с грузоотправителями

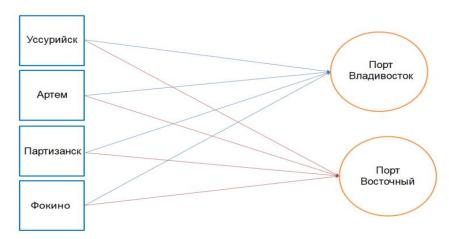


Рис. 2 Возможные маршруты движения контейнеров от грузоотправителей в порты линии

Построение оптимального маршрута осуществляется на основе транспортной задачи, которая представляет собой специальный класс задач линейного программирования, описывающий перемещение какого-либо товара из пункта отправления в пункт назначения [3].

За параметры управления примем такой план, при котором из пункта A_i (пункты отправления) в пункт B_j (порты линии) перевозится x_{ij} контейнеров ($i = \overline{1,4}$; $j=\overline{1,2}$).

Для построения целевой функции необходимо иметь данные по количеству отправляемых контейнеров из каждого пункта в неделю, а также рассчитать себестоимость перевозки контейнеров из пунктов отправления в порты линии.

Строим целевую функцию. Целью планирования данной задачи является минимизация транспортных расходов на перевозку грузов. Суммарные расходы по перевозке составят

$$Z=21136x_{11}+46570x_{12}+12142x_{21}+33701x_{22}+37913x_{31}+$$

$$+16239x_{32}+29107x_{41}+16850x_{42} \rightarrow \min$$

Ограничения. Из пункта A_1 (Уссурийск) планируется вывести контейнеры в количестве x_{11} контейнеров в пункт B_1 (порт Владивосток), в пункт B_2 (порт Восточный) в количестве x_{12} контейнеров. При этом суммарное количество контейнеров, вывозимое из пункта A_1 (Уссурийск) составит $(x_{11} + x_{12})$ контейнеров, что равно 5 контейнерам в неделю. Получили: $x_{11} + x_{12} = 5$.

Аналогично для второго (Артем), третьего (Фокино) и четвертого (Партизанск) пунктов отправления получим:

$$x_{21}+x_{22}=6$$

 $x_{31}+x_{32}=6$
 $x_{41}+x_{42}=5$

В порт B_1 из пункта A_1 требуется привести контейнеры в количестве x_{11} контейнеров, из пункта A_2 — в количестве x_{21} контейнеров. При этом суммарное количество контейнеров, привозимое в порт B_1 , составит $(x_{11}+x_{21})$ контейнеров, что равно 11 контейнерам. Получим: $x_{11}+x_{21}+x_{31}+x_{14}=11$. Аналогично для второго порта линии получим: $x_{21}+x_{22}+x_{23}+x_{24}=11$. Других ограничений нет, однако разумно предположить, что план перевозок неотрицателен, т. е. $x_{ij} \geq 0$, $(i=\overline{1,4}\;;j=\overline{1,2})$.

Для распределения потоков выбраны два варианта с неограниченным и ограниченным количеством слотов в порту отправления.

При ограниченном количестве слотов квота на завоз груженных контейнеров во Владивостоке 8 штук, а для порта Восточный 14 штук. В табл. 1 представлена матрица распределения потоков при ограниченном количестве слотов.

Таблица 1 Матрица распределения потоков при ограниченном количестве слотов

Пункт	Потребность	Порт Владивосток		Порт Восточный	
отправления		8		14	
Уссурийск	5	5	21136		46570
Артем	6	3	12142	3	33701
Фокино	6		37913	6	16239
Партизанск	5		29107	5	16850

После построения модели при ограниченном количестве слотов, рассчитываем себестоимость недельных перевозок: Z=424893 руб. При ограниченном количестве слотов для предприятий, которые находятся в городах Фокино и Партизанск, оптимальный порт Восточный, а для города Уссурийск оптимальным является порт Владивосток, что касается города Артем, количество контейнеров разделится поровну и будет направлено в оба порта.

При неограниченном количестве слотов квота на завоз груженных контейнеров во портах Владивосток и Восточный составляет по 11 штук в каждом. В табл. 2 представлена матрица распределения потоков при неограниченном количестве слотов.

Таблица 2 Матрина распределения потоков при ограниченном количестве слотов

Пункт			Порт Владивосток		Порт Восточный	
отправления		11		11		
Уссурийск	5	5	21136		46570	
Артем	6	6	12142		33701	
Фокино	6		37913	6	16239	
Партизанск	5		29107	5	16850	
Фиктивный пункт	22	11	0	11	0	

После построения модели при неограниченном количестве слотов, рассчитываем себестоимость недельных перевозок. Z=360216 руб. При неограниченном количестве слотов для предприятий, которые находятся в городах Уссурийске и Артеме, оптимальным портом погрузки является Владивосток, а для городов Фокино и Партизанск, оптимальный порт Восточный (пос. Врангель).

Расчет экономической эффективности показал, что внедрение в перечень услуг линии автомобильные контейнерные перевозки способствует увеличению количества грузооборота и прибыли на 1426 тыс. руб. или 1460 тыс. руб. при неограниченном или ограниченном количестве слотов под судозаход соответственно. Таким образом, в условиях конкурентной борьбы между множеством логистических компаний применение транспортных задач позволит определить наиболее оптимизированный план грузоперевозок, при этом минимизировать издержки и повысить эффективность деятельности.

Список литературы

- 1. Лапкин А. И. Взаимодействие судовладельцев с грузоотправителями и агентами в проекте организации морских перевозок / А. И. Лапкин. Текст: непосредственный // Управлшня проектами та розвиток виробництва: Зб. наук. пр. Луганськ: вид-во СНУ ім. В.Даля, 2003. № 1(6). С. 15-23.
- 2. Малыхин А. С. Оптимизация маршрута контейнерной линии на основе распределения грузов между портами и хинтерлендами / А. С. Малыхин Текст: непосредственный // Вестник Государственного университета морского и речного флота имени адмирала С. О. Макарова. СПБ, 2020. Т. 12. № 5. С. 861-867.
- 3. Бунтова Е. В. Использование транспортной задачи для определения оптимального плана грузоперевозок / Е. В. Бунтова, М. А. Нестерова, А. Д. Серкова. Текст: электронный // Human progress. 2018 Том 4, № 2. URL: http://progress-human.com/images/2018/Tom4_2/Buntova.pdf (дата обращения 13.03.2022).

ПРАКТИЧЕСКАЯ РАБОТА

Построение математических моделей транспортных процессов и систем

Цель работы

Приобрести навыки построения математических моделей транспортных процессов и систем

Задача практической работы

Отработать и закрепить умения записывать взаимосвязь показателей задачи линейного программирования в виде математической модели.

Порядок выполнения работы

- 1) Получить задание (Приложение А).
- 2) Изучить необходимые теоретические сведения по курсу (основные определения, понятия, формулировки теорем, формулы), используемые при решении задач. Изложение этих сведений иллюстрируется решенными примерами, ответить на контрольные вопросы.
- 3) Определить параметры управления, значения которых нужно получить в пределах существующих ограничений.
 - 4) Определить цели и ограничения на ресурсы.
 - 5) Описать цели через параметры управления (построение целевой функции).
- 6) Описать ограничения через параметры управления (построение системы ограничений).
- 7) Подготовить аналитический отчёт, содержащий чёткое (пошаговое) описание выполненной работы, расчёты, визуальное представление полученных результатов.
 - 8) Защитить работу.

Содержание отчета к работе

Отчет должен содержать:

- цель работы;
- теоретический материал, содержащий основные понятия, формулы и необходимые пояснения к ним;
 - условие задачи;
 - исходные данные;
- этапы построения математической модели с пояснениями (использовать примеры построения математических моделей из теоретической части работы).

Краткая теория и методические указания к выполнению практической работы

МОДЕЛИРОВАНИЕ ПРОИЗВОДСТВЕННЫХ (ТРАНСПОРНЫХ) ПРОЦЕССОВ

Исследование – вид деятельности человека, позволяющий раскрыть суть и содержание явлений, познать и оценить их, определить тенденции развития, найти возможность использования полученных знаний в практической деятельности.

Исходя из логики движения знания и характера организации познания, в научном исследовании можно выделить два основных уровня: эмпирический и теоретический, а также методы исследования, которые применяются как на эмпирическом, так и на теоретическом уровнях. На эмпирическом уровне идет процесс накопления фактов путем наблюдения, сравнения, измерения, эксперимента и первичной систематизации знаний.

Методы эмпирического и теоретического исследования включают в себя абстрагирование. анализ и синтез, индукцию и дедукцию; моделирование и использование приборов, исторический и логический методы научного познания.

Моделирование — это исследование каких-либо явлений, процессов или систем путем построения и изучения их моделей; использование моделей для определения или уточнения характеристик и рационализации планов работы предприятий. *Модели* — это такие аналоги оригиналов, сходство которых с этими оригиналами существенно, а различие - несущественно для решения поставленной задачи.

В экономике применяются главным образом математические модели, представляющие собой компактную формализованную запись всей совокупности условий экономической задачи в виде символов, индексов, уравнений, функций и других математических выражений.

Математическая модель – условный образ исследуемой системы, который отображает свойства системы, взаимосвязи между ее элементами, структурные и функциональные параметры системы.

Существует множество форм деятельности предприятий, которые связаны с распределением ресурсов. Эти ресурсы включают труд, сырье, оборудование и денежные средства. Иногда процесс распределения ресурсов называют программированием. Поскольку обычно размеры ресурсов ограничены, предприятие сталкивается с определенными проблемами при их распределении.

Очень часто полезным инструментом в процессе распределения ресурсов являются методы моделирования. Математическим программированием называется использование математических методов и моделей для решения проблем программирования.

Линейное программирование является подходящим методом для моделирования распределения ресурсов, если цель и ограничения на ресурсы можно выразить количественно в форме линейных взаимосвязей между переменными.

Планово-экономические задачи автомобильного транспорта, как и любой другой отрасли народного хозяйства, являются многофакторными с большим количеством неизвестных. Модели решения таких задач, как правило, представляют собой неопределенные системы. Найти экстремум (максимум или минимум) таких задач помогают математические методы. Практика применения экономико-математических методов для планирования автомобильных перевозок показывает, что это дает значительный экономический эффект, повышает использование подвижного состава и производительность труда на автомобильном транспорте, снижает транспортные издержки

Снижение транспортных издержек — большая общегосударственная задача. Путь к ее решению — рациональное размещение производительных сил, разработка оптимальных схем грузопотоков, исключение встречных перевозок.

Реализация этих задач требует совершенствования планирования на автомобильном транспорте. Значительное внимание при этом должно быть уделено применению в планировании экономико-математических методов.

Целью применения этих методов является выбор из многих возможных вариантов плана оптимального, т. е. наилучшего с точки зрения эффективности.

В настоящее время при оперативном планировании перевозок грузов и пассажиров, при анализе деятельности автотранспортных предприятий и объединений используются методы математического программирования, теории массового обслуживания, имитационного моделирования, математико-статистические методы и другие.

Преимущества математического моделирования перед другими видами (графическим, аналоговым, механическим и т.п.) заключаются в широком использовании математических моделей, низкой стоимости их создания, быстром получении результатов исследований, возможности проведения расчетных экспериментов и проверки правильности построения модели.

В процессе математического моделирования можно выделить четыре основных этапа.

1 этап. Постановка и формулирование проблемы или задачи. Это наиболее ответственный этап в моделировании, поскольку от того, насколько глубоко изучена сущность процесса и выделены его характерные черты, как будет сформулирована цель решения и осуществлена постановка задачи, зависит в конечном ечете и результат решения.

2 этап. Подготовка исходной информации, необходимой для решения задачи. Здесь важно прежде всего установить показатель, достаточно полно характеризующий качество экономического процесса и с помощью которого сравниваются и оцениваются различные варианты решения и выбирается наилучший. Этот показатель и принимается за *критерий оптимальности*. В качестве критерия в различных экономических задачах могут быть: максимальная прибыль, минимальные издержки автотранспорта, минимальные приведенные затраты на эксплуатацию подвижного состава и т.д. При построении модели экономического процесса в качестве критерия оптимальности выбирают показатель, который в данном случае является наиболее важным.

3 этап. Разработка экономико-математической модели и получение на ее основе соответствующего решения. При составлении математической модели следует отбирать самые существенные факторы, от которых зависит выбор правильного решения задачи. Главное при этом – избежать переусложнения или переупрощения модели. Модель не должна быть сложнее, чем это требуется по заданной точности исходных данных и требуемой точности результатов.

4 этап. Анализ и экспериментальная проверка степени адекватности модели исследуемому экономическому процессу. Только после такой проверки следует принимать окончательное решение. Лучшей математической моделью считается та, которая позволяет получить наиболее рациональное решение. Практическая реализация решения и служит окончательным критерием качества созданной модели.

Задачи линейного программирования прежде всего отличаются тем. Что они описвают линейные, пропорциональные зависимости между рассматриваемыми величинами. Математическая модель задачи линейного программирования включает в себя: линейную целевую функцию, линейные ограничения на используемые ресурсы, переменные величины.

Целевая функция строится на основе выбранного критерия оптимальности, в соответствии с которым решается вопрос о выборе оптимального варианта, путем сравнения различных возможных вариантов.

Ограничения определяют границы развития данной системы с точки зрения необходимых для этого ресурсов.

Переменные величины – искомые задачи линейного программирования.,

В области задач линейного программирования рассматриваются задачи *производственного планирования, транспортная и распределительная*. Рассмотрим процесс построения математических моделей каждой из перечисленных задач.

ЗАДАЧА ПРОИЗВОДСТВЕННОГО ПЛАНИРОВАНИЯ

Пусть некоторое предприятие выпускает однородную продукцию. Изготовление этой продукции связано с затратами m производственных факторов (различного вида сырье, оборудование, рабочая сила, энергия, топливо и т. д.). Обозначим их буквами $\Phi_1, \Phi_2, ..., \Phi_m$. Каждый из них имеется в ограниченном количестве: запас фактора Φ_1 составляет b_1 единиц, запас фактора Φ_2 : составляет b_2 единиц и т. д., запас фактора Φ_m составляет b_m единиц.

Предприятие располагает n отработанными технологическими способами. Обозначим их $T_1, T_2, ..., T_n$. Известно, что при работе предприятия в течение единицы времени по способу T_j затрачивается a_{ij} единиц фактора Φ_i . Таким образом, работа предприятия в течение единицы времени по способу T_1 требует затраты a_{11} единиц фактора Φ_1 , a_{21} единиц фактора Φ_2 и т. д., a_{m1} единиц фактора Φ_m . Работа предприятия но способу T_j ($j = \overline{1;n}$) в течение единицы времени приводит к выпуску c_j ($j = \overline{1;n}$) единиц готовой продукции.

Требуется так спланировать работу предприятия, чтобы добиться максимального объема выпускаемой продукции.

Строим математическую модель данной задачи.

За параметры управления (план) примем числа, показывающие, сколько времени отводится на работу по каждому из способов T_i ($i = \overline{1;n}$). Обозначим их через $x_1, x_2, ..., x_n$.

Тогда мы выпустим продукцию в объеме

$$\mathbf{Z} = \mathbf{c_1} \mathbf{x_1} + \mathbf{c_2} \mathbf{x_2} + \dots + \mathbf{c_n} \mathbf{x_n}.$$

Функция Z, т. е. объем готовой продукции при плане $x_1, x_2, ..., x_n$ будет показателем качества или целевой функцией при условии, что целью планирования является получение максимального объема продукции. Задача заключается в том, чтобы найти такой план, при котором функция Z достигает своего максимального значения.

На первый взгляд, выгоднее всего планировать больше времени на тот способ T_k , для которого c_k имеет наибольшее значение. Однако каждый способ связан с производственными

затратами, и если они велики для способа T_k , то может оказаться более выгодным применение и других способов.

Поэтому рассмотрим, сколько единиц каждого из факторов будет затрачено при исполнении плана $x_1, x_2, ..., x_n$. Для i-го фактора это будут затраты, равные $a_{i1}x_1 + a_{i2}x_2 + \cdots + a_{in}x_n$ единиц этого фактора. Но так как факторы Φ_i ($i = \overline{1;n}$) ограничены запасами b_i ($i = \overline{1;n}$), то планировать надо так, чтобы затраты не превышали запасов, т. е. чтобы удовлетворялись неравенства

$$\begin{aligned} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n &\leq b_1; \\ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n &\leq b_2; \\ & \cdots \\ a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n &\leq b_m. \end{aligned}$$

Причем числа x_1 , x_2 , ..., x_n , выражающие намеченный план, должны быть неотрицательными.

Итак, получили следующую математическую модель.

Необходимо найти такие числа x_1 , x_2 , ..., x_n , при которых достигается максимум целевой функции

$$Z = c_1 x_1 + c_2 x_2 + \dots + c_n x_n \rightarrow \max,$$

удовлетворяется система ограничений:

и все переменные неотрицательны:

$$x_1 \ge 0; x_2 \ge 0; ...; x_n \ge 0.$$

ТРАНСПОРТНАЯ ЗАДАЧА

Имеется m пунктов отправления A_1 , A_2 , ..., A_m из которых надо вывести однородный груз в количествах a_1 , a_2 , ..., a_m тонн соответственно. Этот груз нужно доставить в n пунктов назначения B_1 , B_2 , ..., B_n потребности которых составляют b_1 , b_2 , ..., b_n тонн соответственно. Известно, что расходы по перевозке 1 т груза из пункта A_i в пункт B_j составляют c_{ij} руб. Требуется составить такой план перевозок, при котором суммарные расходы по перевозке были бы минимальными, весь груз из пунктов отправления был бы вывезен, все пункты назначения получили бы требуемый груз.

Два последних условия могут быть выполнены только в том случае, если общее количество груза во всех пунктах отправления равно общей потребности во всех пунктах назначения:

$$\sum_{i=1}^m \sum_{j=1}^n c_{ij} x_{ij}.$$

Составим математическую модель задачи.

За параметры управления примем такой план, при котором из пункта A_i , в пункт B_i перевозится x_{ij} тонн $(i = \overline{1;m}; j = \overline{1;n})$. Тогда суммарные расходы по перевозке составят (целевая функция):

$$\begin{split} Z &= c_{11}x_{11} + c_{12}x_{12} + \dots + c_{1n}x_{1n} + c_{21}x_{21} + c_{22}x_{22} + \dots + c_{2n}x_{2n} + \\ &+ \dots + \\ &+ c_{m1}x_{m2} + c_{m2}x_{m2} + \dots + c_{mn}x_{mn} \to \min. \end{split}$$

Строим систему ограничений. Она состоит из двух групп ограничений. Первая группа ограничений выражает требование, состоящее в том, что весь груз полностью вывозится из пунктов отправления:

Вторая группа ограничений выражает требование, состоящее в том, что все пункты назначения получают требуемый груз:

Причем план перевозок неотрицателен, т. е. $x_{ij} \ge 0$ ($i = \overline{1; m}$; $j = \overline{1; n}$).

РАСПРЕДЕЛИТЕЛЬНАЯ ЗАДАЧА

Это задача о расстановке автомобилей по маршрутам, например в масштабе автотранспортного предприятия (АТП).

Пусть имеется m типов автомобилей, которые должны обеспечить перевозки на n маршрутах. Объем перевозок на этих маршрутах составляет $Q_1, Q_2, ..., Q_n$ тонно-миль соответственно. Известно, что если автомобиль i-го типа использовать на j-м маршруте, то его

провозная способность составит p_{ij} тонно-км за весь планируемый период. Эксплуатация i-го типа на j-м маршруте в течение всего периода требует расхода R_{ij} руб.

Требуется составить такой план перевозок, при котором достигается минимум эксплуатационных расходов при выполнении заданного объема перевозок.

Составим математическую модель.

За параметры управления примем x_{ij} — доли эксплуатационного периода, отведенные для работы i-го типа автомобиля на j-м маршруте.

Эксплуатационные расходы при этом составят (целевая функция)

Система ограничений состоит из двух групп.

Первая группа ограничений выражает требования, состоящие в том, что сумма долей планируемого периода, намеченных для работы каждого типа автомобиля на разных маршрутах, не может быть больше единицы:

Вторая группа ограничений выражает требование, предъявленное заданными объемами перевозок $Q_1, Q_2, ..., Q_n$ на каждом маршруте. Получим:

$$\begin{aligned} p_{11}x_{11} + p_{21}x_{12} + \cdots + p_{m1}x_{m1} &= Q_1; \\ p_{12}x_{21} + p_{22}x_{22} + \cdots + p_{m2}x_{m2} &= Q_2; \\ &\cdots &\cdots \\ p_{1n}x_{1n} + p_{2n}x_{2n} + \cdots + p_{mn}x_{mn} &= Q_n. \end{aligned}$$

При этом все
$$x_{ij} \ge 0$$
 $(i = \overline{1; m}; j = \overline{1; n}).$

Пример 1. Построить математическую модель задачи.

Небольшая фирма производит два типа машинного масла. Фирма может продать всю продукцию, которая будет произведена, однако объем производства ограничен количеством основного ингредиента и производственной мощностью имеющегося оборудования. Для производства 1 л первого типа масла требуется 0,02 ч работы оборудования, а для производства 1 л второго типа масла -0,04 ч. Расход основного ингредиента составляет 0,01 кг и 0,04 кг на 1 л первого и второго типов масла соответственно. Ежедневно в распоряжении фирмы имеется 24 ч рабочего времени оборудования и 16 кг основного ингредиента. Доход фирмы составляет 2 рубля за 1 л первого типа масла и 4 рубля за 1 л второго типа масла.

Сколько продукции каждого вида следует производить ежедневно, если цель фирмы состоит в максимизации ежедневного дохода?

Данная задача относится к задачам производственного планирования.

За параметры управления возьмем: x_1 - число литров первого типа машинного масла и x_2 - число литров второго типа масла, производимое за день.

Строим целевую функцию. Целью планирования данной задачи является максимизация ежедневного дохода. За реализацию первого типа масла ежедневно фирма получает доход в размере $2x_1$ руб. и за реализацию второго типа масла $4x_2$ руб. Тогда общий доход от реализации за день составит

$$Z = 2x_1 + 4x_2 \rightarrow max.$$

Для производства x_1 литров первого и x_2 литров второго масла требуется $0,02x_1 + 0,04x_2$ часов работы оборудования ежедневно. Максимальное время работы оборудования в день составляет 24 ч, следовательно, объем производства должен быть таким, чтобы число затраченных часов работы оборудования было меньше либо равно 24 ч ежедневно. Таким образом,

$$0.02x_1 + 0.04x_2 \le 24$$
 ч/день.

Производство x_1 литров первого типа масла и x_2 второго типа масла требует $0.01x_1 + 0.04x_2$ кг ингредиента ежедневно. Максимальный расход ингредиента ежедневно составляет 16 кг, следовательно, объем производства должен быть таким, чтобы требуемое количество специального ингредиента составляло не более 16 кг в день. Таким образом,

$$0.01x_1 + 0.04x_2 \le 24$$
 ч/день.

Других ограничений нет, однако разумно предположить, что фирма не может производить машинное масло в отрицательных количествах, поэтому

$$x_1 \ge 0, x_2 \ge 0.$$

Получили математическую модель задачи:

1) целевая функция:

$$Z=2x_1+4x_2\to max;$$

2) система ограничений:

$$0.02x_1 + 0.04x_2 \le 24$$
;
 $0.01x_1 + 0.04x_2 \le 16$;

условие неотрицательности переменных:

$$x_1 \ge 0, x_2 \ge 0$$

Пример 2. Построить математическую модель задачи.

Имеется три пункта отправления A1, A2, A3, из которых надо вывезти однородный груз в количествах 10, 30 и 50 тонн соответственно. Этот груз нужно доставить в четыре пункта назначения B_1 , B_2 , B_3 , B_4 , потребности которых составляют соответственно 20, 30, 15 и 25 тонн. Расходы на перевозку 1-й т груза из пункта A_i , в пункт B_i записаны в табл. 1.

Таблица 1

Пункты	Расходы на перевозку 1-й т груза в пункты прибытия						
отправления	B_1	B_2 B_3 B_4					
A_I	7	8	5	3			
A_2	2	4	5	9			
A_3	6	4	1	2			

Требуется составить такой план перевозок, при котором суммарные расходы по перевозке были бы минимальными, весь груз из пунктов отправления был бы вывезен, все пункты назначения получили бы требуемый груз.

Данная задача относится к транспортным задачам.

За параметры управления примем такой план, при котором из пункта A_i в пункт B_j перевозится x_{ij} тонн ($i = \overline{1;3}$; $j = \overline{1;4}$).

Строим целевую функцию. Целью планирования данной задачи является минимизация транспортных расходов на перевозку грузов. Суммарные расходы по перевозке составят

$$Z = 7x_{11} + 8x_{12} + 5x_{13} + 3x_{14} + 2x_{21} + 4x_{22} + 5x_{23} + 9x_{24} + 6x_{31} + 4x_{32} + x_{33} + 2x_{34} \rightarrow min.$$

Из пункта A_I планируемся вывести груз в количестве x_{II} тонн в пункт B_I , в пункт B_2 - в количестве x_{I2} тонн, в пункт B_3 в количестве x_{I3} тонн, в пункт B_4 - в количестве x_{I4} тонн. При этом суммарное количество груза, вывозимое из пункта A_I составит ($x_{11} + x_{12} + x_{13} + x_{14}$) тонн, что равно 10 тоннам. Получили:

$$(x_{11} + x_{12} + x_{13} + x_{14}) = 10.$$

Аналогично для второго и третьего пунктов отправления получим:

$$(x_{21} + x_{22} + x_{23} + x_{24}) = 30;$$

 $(x_{31} + x_{32} + x_{33} + x_{34}) = 50.$

В пункт B_1 из пункта A_1 требуется привести |руз в количестве x_{11} тонн, из пункта A_2 - в количестве x_{21} тонн, из пункта A_3 в количестве x_{31} тонн. При этом

суммарное количество груза, привозимое в пункт B_I , составит $(x_{11} + x_{21} + x_{31})$ тонн, что равно 20 тоннам. Получим:

$$x_{11} + x_{21} + x_{31} = 20.$$

Аналогично для второго, третьего и четвертого пунктов прибытия получим:

$$x_{12} + x_{22} + x_{32} = 30;$$

 $x_{13} + x_{23} + x_{33} = 15;$
 $x_{14} + x_{24} + x_{34} = 25.$

Других ограничений нет, однако разумно предположить, что план перевозок неотрицателен, т. е. $x_{ij} \le 0$ ($i = \overline{1;3}$; $j = \overline{1;4}$).

Получили математическую модель задачи:

1) целевая функция:

$$Z = 7x_{11} + 8x_{12} + 5x_{13} + 3x_{14} + 2x_{21} + 4x_{22} + 5x_{23} + 9x_{24} + 6x_{31} + 4x_{32} + x_{33} + 2x_{34} \rightarrow min;$$

2) система ограничений:

$$(x_{11} + x_{12} + x_{13} + x_{14}) = 10;$$

$$(x_{21} + x_{22} + x_{23} + x_{24}) = 30;$$

$$(x_{31} + x_{32} + x_{33} + x_{34}) = 50;$$

$$x_{11} + x_{21} + x_{31} = 20;$$

$$x_{12} + x_{22} + x_{32} = 30;$$

$$x_{13} + x_{23} + x_{33} = 15;$$

$$x_{14} + x_{24} + x_{34} = 25.$$

3) условие неотрицательности переменных: $x_{ij} \ge 0$ ($i = \overline{1;3}; j = \overline{1;4}$).

Пример 3. Построить математическую модель задачи.

Требуется расставить автомобили трех типов на двух маршрутах с заданным объемом перевозок и обеспечить минимум эксплуатационных расходов. Остальные данные приведены в табл. 2.

Таблица 2

Тип	Производительность		Эксплуатационные		Эксплуатационный
автомобиля	автомобилей, тыс.		расходы, тыс. руб. в		период, сут.
	тонно-км в сут.		сут.		
	1-я линия	2-я линия	1-я линия	2-я линия	
1	10	15	4	8	300
2	5	10	3	4	300
3	12	10	5	4	300
Заданный	3 600	4 800			
объем					

перевозок,			
тыс. тонно-			
КМ			

Данная задача относится к распределительным задачам.

Обозначим x_{ij} долю эксплуатационного периода, в течение которого автомобили i-го типа работают на j-м маршруте.

Строим целевую функцию. Целью планирования данной задачи является минимизация эксплуатационных расходов. Суммарные расходы при этом составят

$$Z = 4x_{11} + 8x_{12} + 3x_{21} + 4x_{22} + 5x_{31} + 4x_{32} \rightarrow min.$$

Сумма долей планируемого периода, намеченных для работы первого типа автомобиля на первом и втором маршрутах, составит $(x_{11} + x_{12})$ и не может быть больше единицы. Получим:

$$x_{11} + x_{12} \le 1$$
.

Аналогично для второго и третьего типа автомобилей получим:

$$x_{21} + x_{22} \le 1;$$

$$x_{31} + x_{32} \le 1.$$

При этом на первом маршруте объем перевозок составит $(10x_{11} + 5x_{21} + 12x_{31})$ тыс. тонно-км в сутки, что равно 12. Получим:..

$$10x_{11} + 5x_{21} + 12x_{31} = 12.$$

Аналогично для второго маршрута получим:

$$15x_{12} + 10x_{22} + 10x_{32} = 16.$$

При этом все $x_{ij} \ge 0$ ($i = \overline{1;3}; j = \overline{1;2}$).

Получили математическую модель задачи:

1) целевая функция:

$$Z = 4x_{11} + 8x_{12} + 3x_{21} + 4x_{22} + 5x_{31} + 4x_{32} \rightarrow min;$$

2) система ограничений:

$$x_{11} + x_{12} \le 1;$$

$$x_{21} + x_{22} \le 1;$$

$$x_{31} + x_{32} \le 1;$$

$$10x_{11} + 5x_{21} + 12x_{31} = 12;$$

$$15x_{12} + 10x_{22} + 10x_{32} = 16.$$

3) условие неотрицательности переменных: $x_{ij} \ge 0 (i = \overline{1;3}; j = \overline{1;2})$.

Пример 4. Построить математическую модель задачи.

Автосборочный завод выпускает легковые и грузовые машины. В производстве участвуют четыре цеха завода: кузнечно-прессовый, цех двигателей, сборочный легковых машин и сборочный грузовых машин. производительность которых (за месяц) указана в табл. 3. Прибыль от реализации одной грузовой машины - 5000 руб., одной легковой - 3000 руб.

Требуется составить месячный план выпуска легковых и грузовых автомашин, обеспечивающий достижение максимальной прибыли.

Таблица 3

Цех	Месячный выпуск машин, тыс. штук		
	Грузовые	Легковые	
Кузнечно-прессовый	40	35	
Двигателей	17	32	
Сборочный легковых машин	-	15	
Сборочный грузовых машин	21	-	

Строим математическую модель задачи производственного планирования.

Запланируем выпустить в месяц x_1 грузовых и x_2 легковых машин. При этом предприятие получит прибыль (целевая функция):

$$Z = 5000x_1 + 3000x_2 \rightarrow max$$
.

Построим систему ограничений. Если кузнечно-прессовый цех выпускает x_1 грузовых машин в месяц, то он на это затрачивает такую долю своей месячной производительности, которая выражается дробью $x_1/40$. Кроме того, цех работает над выпуском легковых машин и затрачивает долю своей месячной производительности равную $x_2/35$. Сумма этих долей не должна превышать единицы. Получим первое неравенство:

$$\frac{x_1}{40} + \frac{x_2}{35} \le 1.$$

Рассматривая цех двигателей, получим второе неравенство:

$$\frac{x_1}{17} + \frac{x_2}{32} \le 1.$$

Третье и четвертое неравенство получим из условий производительности сборочных цехов:

$$x_1 \le 21; x_2 \le 15.$$

Условие неотрицательности переменных:

$$x_1 \ge 0, x_2 \ge 0.$$

Пример 5. Построить математическую модель задачи.

Для разгрузки судна в два склада выделено 5 портальных кранов, 30 автомашин, 4 автопогрузчика на склад № 2 и 7 бригад для работы на склад № 1. Средняя продолжительность одного цикла работы крана равна 5 мин. Время, затрачиваемое другими перегрузочными средствами на обработку одного цикла крана, показано в табл. 4.

Требуется составить наиболее эффективный технологический план разгрузки, т. е. такой, при котором за смену (7 ч = 420 мин.) выгружается и перевозится на склады максимальное количество груза.

Строим математическую модель задачи производственного планирования.

За параметры управления примем x_1 и x_2 количество циклов работы кранов, предназначенных для отправки груза на склады №№ 1 и 2 соответственно, тогда целевая функция

$$Z = x_1 + x_2 \rightarrow max$$
.

Таблица 4

Показатели	Время, затрачиваемое на обработку одного цикла крана		
	для 1-го склада	для 2-го склада	
Продолжительность одного	25	30	
оборота автомашины, мин			
Продолжительность разгрузки	-	10	
одной автомашины с помощью			
автопогрузчика, мин			
Продолжительность разгрузки	18	-	
одной автомашины бригадой			
портовых рабочих (по 3 чел.),			
мин			

Строим систему ограничений. Для этого рассчитаем количество циклов, которые выполняет кран за одну смену: 420/5 = 84. Всего кранов 5, следовательно, общее количество циклов равно $84 \cdot 5 = 420$. Получим первое неравенство:

$$x_1 + x_2 \le 420$$
.

Если для обработки груза, перегружаемого краном за один цикл, при доставке его на первый склад требуется 25 мин для одной автомашины, то при x_1 циклах будет затрачено $25x_1$ мин. Аналогично при доставке груза на второй склад будет затрачено $30x_2$ мин машинного времени. Всего имеется 30 автомашин, т. е. $30 \cdot 420 = 12600$ мин машинного времени. Получим второе неравенство:

$$25x_1 + 30x_2 \le 12600.$$

Имеем 4 автопогрузчика, т. е. $4 \cdot 420 = 1680$ мин времени работы автопогрузчиков. Для обработки груза, перегружаемого за один цикл работы крана, на втором складе требуется 10 мин работы одного автопогрузчика. Получим третье ограничение:

$$10x_2 \le 1680$$
.

И последнее, в нашем распоряжении 7 бригад рабочих для работы на первом складе, т.е. всего $7 \cdot 420 = 2940$ мин времени работы рабочих. На разгрузку на первом складе требуется $18x_1$ мин. Получаем четвертое неравенство:

$$18x_1 \le 2940$$
.

Условие неотрицательности переменных: $x_1 \ge 0$, $x_2 \ge 0$.

Вопросы для самоконтроля

- 1. Какова роль математических методов в принятии эффективных управленческих решений производственных задач автомобильного транспорта?
- 2. Каковы методологические основы математического моделирования в организации транспортных процессов?
 - 3. Перечислите этапы построения математических моделей транспортных процессов.
 - 4. Запишите математическую модель задачи производственного планирования.
 - 5. Запишите математическую модель транспортом задачи.
 - 6. Запишите математическую модель распределительной (расстановочной) задачи.

Рекомендуемая литература

- 1. Маликова, Т.Е. Математические методы и модели в управлении на морском транспорте : учебное пособие для вузов / Т. Е. Маликова. 2-е изд., испр. и доп. Москва : Издательство Юрайт, 2023. 373 с. (Высшее образование). ISBN 978-5-534-04919-0. Текст : электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/515121
- 2. Кадасев, Д. А. Имитационное моделирование транспортных процессов: методические указания к практическим работам / Д. А. Кадасев. Липецк : Липецкий государственный технический университет, ЭБС АСВ, 2022. 18 с. Текст : электронный // Цифровой образовательный ресурс IPR SMART : [сайт]. URL: https://www.iprbookshop.ru/123526.html
- 3. Королев, А. В. Экономико-математические методы и моделирование : учебник и практикум для вузов / А. В. Королев. Москва : Издательство Юрайт, 2023. 280 с. (Высшее образование). ISBN 978-5-534-00883-8. Текст : электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/512225

- 4. Королев, А. В. Экономико-математические методы и моделирование : учебник и практикум для вузов / А. В. Королев. Москва : Издательство Юрайт, 2023. 280 с. (Высшее образование). ISBN 978-5-534-00883-8. Текст : электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/512225
- 4. Смагин, Б. И. Экономико-математические методы: учебник для вузов / Б. И. Смагин. 2-е изд., испр. и доп. Москва: Издательство Юрайт, 2023. 272 с. (Высшее образование). ISBN 978-5-9916-9814-6. Текст: электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/514013

Построить математические модели следующих задач

1. Фабрика выпускает два вида моторного масла. Используемые для производства обоих продуктов ингредиенты в основном одинаковы и, как правило, не являются дефицитом. Основным ограничением, накладываемым на объем выпуска, является наличие фонда рабочего времени в каждом из трех цехов фабрики. В приведенной ниже табл. 5 указаны общий фонд рабочею времени и число человеко-часов. требуемое для производства 1 л продукта.

Таблина 5

Название цеха	Необходимый фонд р челч	Общий фонд рабочего времени, чел ч. в месяц		
	1-й тип	2-й тип		
Производственный	10	4	1 000	
Добавки присадок	3	2	360	
Упаковки	2	5	600	

Доход от производства 1000 л масла первого типа составляет 150 тысяч рублей, а от производства масла второго типа — 75 тысяч рублей. На настоящий момент нет никаких ограничений на возможные объемы продаж. Требуется спланировать работу фабрики так, чтобы общий доход за месяц был максимальным.

2. Три завода поставляют некоторую разновидность стали на пять торговых складов. Спрос каждого торгового склада на месяц, наличие стали па заводах, а также стоимость транспортировки 1 т стали приведены в табл. 6. Общие транспортные издержки на перевозки должны быть минимальными.

Таблица 6

						<u> </u>
	Транспор					
Завод		Прациожение т				
Завод	1-й	2-й	3-й	4-й	5-й	Предложение, т
	склад	склад	склад	склад	склад	
A	20	27	33	25	34	200
В	22	36	34	28	26	250
C	26	29	27	26	28	300
Потребность, т	100	150	200	100	200	

3. Три пекарни осуществляют ежедневные поставки хлеба для четырех магазинов. В табл. 7 приведена информация о спросе на продукцию, се наличии и транспортных издержках. Общие транспортные издержки на перевозки должны быть минимальными.

Таблица 7

Пекарня	-	анспортные пагазинов, р	Общее предложение		
	A	В	C	D	предлежение
1	15	25	10	20	700
2	20	30	20	15	650
3	10 15 25 30				200
Общая потребность	400	500	350	1000	

4. Фабрика выпускает три вида антифриза. Используемые для производства продуктов ингредиенты в основном одинаковы и, как правило, не являются дефицитом. Основным ограничением, накладываемым на объем выпуска, является наличие фонда рабочего времени в каждом из двух цехов фабрики. В приведенной ниже табл. 8 указаны общий фонд рабочего времени и число человеко-часов, требуемое для производства 1000 литров антифриза.

Доход от производства 1000 литров антифриза первого типа составляет 200 тысяч рублей, от производства антифриза второго типа — 100 тысяч рублей, а от производства антифриза третьего типа — 150 тысяч рублей. На настоящий момент нет никаких ограничений на возможные объемы продаж. Требуется спланировать работу фабрики так, чтобы общий доход за месяц был максимальным

Таблица 8

Цех	· ·	имый фонд р и, челч/1000 2-й тип		Общий фонд рабочего времени, челч в месяц
Производственный	10	12	8	1 000
Упаковки	2	1	3	600

5. Завод выпускает автомобили четырех моделей. В производственный процесс вовлечены три цеха завода – цех узловой сборки, сборочный и испытательный. Распределение времени, требуемого для обработки каждой модели в каждом цехе, а также максимальные производственные мощности цехов приведены в табл. 9. Отдел исследований рынка производит периодическую оценку потребительского спроса на каждую модель. Максимальные прогнозные значения спроса и доходы от реализации единицы продукции также содержатся в табл. 9. Целью планирования работы завода является максимизация общего ежемесячного дохода.

Таблица 9

Цех	Врем	Максимальная			
	1-я	2- я	3-я	4-я	производственная
	модель	модель	модель	модель	мощность, челч
					в месяц
Узловой сборки	5	8	20	25	5
Сборочный	2	3	8	14	2
Испытательный	0,1	0,2	2	4	0,1
Максимальное прогнозное значение спроса за месяц	100	45	25	20	
Доходы, тыс. руб.	3	4	5	6	

- 6. Фирма производит три типа трансмиссионного масла с использованием одинаковых смесеобразующих машин и видов работ. Объем производства ограничен производственной мощностью имеющегося оборудования. Для производства 1 л масла первого типа требуется 0,01 ч работы оборудования, для производства 1 л масла второго тип 0,04 ч, а для производства 1 л масла третьего типа 0,02 ч. Ограничение на фонд работы смесеобразующих машин равно 5900 ч в неделю. В соответствии с контрактными соглашениями компания должна производить не менее 25000 л трансмиссионного масла третьего типа в неделю. Максимальный спрос на трансмиссионное масло первого типа равен 35000 л в неделю, а на трансмиссионное масло второго типа 29000 л в неделю. Доход фирмы составляет 2000 рублей за 1 л трансмиссионного масла первого типа, 3000 рублей за 1 л трансмиссионного масла второго типа и 100 рублей за трансмиссионного масла третьего типа. Сколько трансмиссионного масла каждого вида следует производить ежедневно, если цель фирмы состоит в максимизации ежедневного дохода?
- 7. Частная промышленная фирма специализируется на производстве технических лаков. Для производства 1 галлона матового лака необходимо затратить 0,06 ч трудозатрат, а для производства одного галлона полировочного лака 0,12 ч. Резерв рабочего времени составляет 400 чел.-ч. в день. Размер ежедневного запаса необходимой химической смеси равен 1000 кг, тогда как ее расход на один галлон матового и полировочного лаков составляет 0,05 и 0,02 кг соответственно. Технологические возможности завода позволяют выпускать не более 3000 галлонов лака в день.

В соответствии с договором компания должна поставлять основному оптовому покупателю 50 галлонов матового лака и 25 галлонов полировочного лака каждую рабочую неделю. Администрации компании необходимо определить ежедневные объемы производства каждого вида лаков, которые позволяют получать максимальный общий доход, если доход от продажи одного галлона матового лака составляет 300 рублей, а доход от продажи полировочного лака -150 рублей.

8. Компания выпускает пять сходных друг с другом товаров. В табл. 10 представлены расходы ресурсов, необходимых для выпуска единицы каждого товара, а также недельные

запасы каждого ресурса и доход от продажи единицы каждого продукта. Общий доход от реализации товаров за неделю должен быть максимальным.

Таблица 10

		Pac	Недельный запас			
Ресурсы	1-й	2-й	3-й	4-й	5-й	ресурсов
	товар	товар	товар	товар	товар	
Сырье, кг	6	6,5	6,1	6,1	6,4	35000
Сборка, ч	1	0,75	1,25	1	1	6000
Обжиг, ч	3	4,5	6	6	4,5	30000
Упаковка, ч	0,5	0,5	0,75	0,5	1	4000
Доход, руб.	40	42	44	48	52	

9. Некоторая фирма выпускает два продукта, производство каждого из них требует два вида сырья. Для выпуска 1 кг первого продукта необходимо 0,7 кг первого сырья и 0,3 кг второго сырья. Производство 1 кг второго продукта требует 0,6 кг первого сырья и 0,4 кг второго сырья. В распоряжении фирмы имеются 10 кг первого сырья и 12 кг второго сырья в неделю, трудовые ресурсы и производственные мощности — в неограниченном количестве, кроме того, фирма может реализовать всю произведенную продукцию. Прибыль от выпуска 1 кг первого продукта составляет 50 рублей, а от выпуска 1 кг второго продукта — 80 руб. Общий доход от реализации продукции должен быть максимальным.

10. Имеется три пункта отправления, из которых надо вывести однородный груз в количествах 40, 30 и 30 тонн соответственно. Этот груз нужно доставить в три пункта назначения, потребности которых составляют соответственно 20. 30 и 50 тонн. Расходы по перевозке 1 т груза даны в табл.11.

Таблица 11

Пункты отправления	Расходы на перевозку 1 г груза в пункты назначения					
	B1 B2 B3					
A1	2	7	8			
A2	3	1	2			
A3	6	3	5			

Требуется составить такой план перевозок, при котором суммарные расходы по перевозке были бы минимальными, весь груз из пунктов отправления был бы вывезен, все пункты назначения получили бы требуемый груз.

11. Завод выпускает три типа двигателей для автомобилей. В производственный процесс вовлечены три цеха завода цех узловой сборки, сборочный и испытательный. Распределение времени, требуемого для обработки каждой модели в каждом цехе, а также максимальные производственные мощности цехов приведены в табл. 12.

Таблица 12

	Время			
Цех	1-й тип	2-й тип	3-й тип	Максимальная производственная мощность, чел./мес.
Узловой сборки	4	9	19	700
Сборочный	3	4	8	400
Испытательный	0,2	0.5	4	150
Доходы, тыс. руб.	2	3	4	

Целью планирования работы завода является максимизация общего ежемесячного дохода.

12. Для разгрузки судна в три склада выделено 5 портальных кранов, 30 автомашин, 4 автопогрузчика на склад № 2 и 7 бригад для работы на складах №1 и № 3. Средняя продолжительность одного цикла работы крана равна 5 мин. Время. затрачиваемое другими перегрузочными средствами на обработку одного цикла крана, показано в табл. 13.

Таблица 13

Показатели	Время			
	1-й	2-й	3-й	
	склад	склад	склад	
Продолжительность одного оборота автомашины, мин	30	35	25	
Продолжительность разгрузки одной автомашины с	-	10	-	
помощью автопогрузчика, мин		10		
Продолжительность разгрузки одной автомашины	18	-	10	
бригадой портовых рабочих (по 3 чел.), мин	10			

Требуется составить наиболее эффективный технологический план разгрузки, т. е. такой, при котором за смену (7 ч = 420 мин) выгружается и перевозится на склады максимальное количество груза.

13. Компания выпускает четыре вида продукции. В табл. 14 представлены расходы ресурсов, необходимых для выпуска единицы каждого вида продукции, а также недельные запасы каждого ресурса и издержки предприятия за единицу каждого вида продукции. Общие издержки от выпуска продукции за неделю должны быть минимальными.

Таблица 14

		Прод	Недельный запас		
Ресурсы	1	2	3	4	ресурсов
Сырье, кг	5	7	4	6	30 000
Производство, ч	1	0,75	1.25	1,5	10 000
Упаковка, ч	0,5	0,5	0,75	0,5	5 000
Издержки, руб.	10	20	25	30	

14. Автопредприятие за два месяца работы должно перевезти на первом маршруте – 20000 т, на втором маршруте – 10000 т и на третьем маршруте – 10000 т грузов. Для этих перевозок можно использовать автомобили трех типов, для которых известны провозные способности и эксплуатационные расходы (табл. 15).

Требуется составить план работы автомобилей, обеспечивающий выполнение заданного объема перевозок в указанное время с минимальными эксплуатационными расходами.

Таблица 15

В	Провозные с	пособности ав	томобилей в	Эксплуатационные расходы			
Гил		месяц, тыс. т		автомобилей за один месяц,			
Тип				тыс. руб.			
\sim	1-й	2-й	3-й	1-й	2-й	3-й	
aBT	маршрут	маршрут	маршрут	маршрут	маршрут	маршрут	
1	10	15	16	10	30	12	
2	11	10	7	20	15	14	
3	6	8	9	11	18	25	

15. Завод производит присадки для изготовления машинных масел трех видов. Одно из них имеет антифрикционные присадки, которые снижают трение на всех скоростях и при любых температурах, другое масло содержит противоизносные присадки, которые упрочняют верхний слой металла, препятствуя абразивному износу детали; третий сорт масла содержит терметизирующие присадки «стоп течь», снижающие вероятность появления протечек через слабые уплотнители и мелкие отверстия. В табл. 16 указаны основные ингредиенты каждого масла и размер недельного запаса, а также оценка максимального спроса за неделю и доход от продажи каждого вида масла за неделю. Требуется, чтобы общий доход, получаемый за неделю, был максимальным.

Таблица 16

	Расход ингред	циентов на 1 л	продукта, кг		
Вид масла	Антифрикционные	Противоизносные	Терметизирующие	Оценка макси- малыюго спроса за неделю, кг	Доход с продажи 1 л масла, руб.
Первый вид масла	0,3	0,3	0,35	2000	3
Первый вид масла	0,15	0,25	0,55	1800	4
Первый вид масла	0,15	0,3	0,25	1200	4,5
Размер недельного запаса ингредиентов, кг		1250	2200		

16. Завод производитель высокоточных элементов для автомобилей, выпускает три различных вида деталей. Завод располагает фондом рабочею времени в 6000 чел.-ч в неделю. Для производства одной детали первою типа требуется 3 чел.-ч, для производства одной детали второго типа — 2 чел.-ч, а для производства одной детали третьего типа — 4 чел.-ч. Производственные мощности завода позволяют выпускать максимум 2000 деталей первого типа, 2200 деталей второго типа и 1600 деталей третьего типа в неделю. Для производства деталей первого типа требуется 3 кг алюминия и 1 кг изоляционного материала, для производства одной детали второго типа — 6 кг алюминия и 2 кг изоляционного материала, а для производства одной детали третьего типа — 2 кг алюминия. Уровень запасов алюминия составляет 10500 кг в неделю, а изоляционного материала - 5000 кг в неделю. Кроме того, завод ежедневно поставляет 300 деталей второго типа своему постоянному заказчику. Существует также профсоюзное соглашение, в соответствии с которым общее число производимых в течение одной недели деталей должно составлять не менее 1500 штук.

Сколько деталей каждого типа следует производить, чтобы максимизировать общий доход за неделю, если доход от производства одной детали первого типа составляет 300 рублей, от производства одной детали второго типа -400 рублей, а от производства одной детали третьего типа -500 рублей?

17. Менеджер автопредприятия намерен вложить 25 млн. рублей в инвестиционный фонд на два года. Его выбор ограничен тремя тинами инвестиций: А, В и С. Для всех трех объектов степень риска и условия размещения капитала различны. Чтобы не подвергать риску имеющийся капитал, менеджер принял решение, что не менее 40 % от всей суммы инвестиций необходимо вложить в проект А. Для обеспечения значительного роста капитала не менее 25 % общей суммы денежных средств необходимо поместить в проект В. Однако вложения в В не должны превышать 35 % общего объема вложений в инвестиционный фонд ввиду высокой вероятности риска, соответствующей проекту. Кроме того, для сохранности капитала в проекты А и С следует вложить не менее 50 % средств, помещаемых в инвестиционный фонд. В настоящее время проект А позволяет получать 10 % годовых, проект В — 15 % годовых, проект С — 5 % годовых. Целью является максимизация общего дохода от вложений за двухлетний период.

18. Автосборочный завод выпускает как легковые, так и грузовые машины. В производственный процесс вовлечены четыре цеха завода — кузнечнопрессовый, цех двигателей, сборочный легковых машин и сборочный грузовых машин, производительность которых указана в табл. 17.

Таблица 17

Hoy	Месячный выпуск	машин, тыс. штук
Цех	Грузовые	Легковые
Кузнечно-прессовый	30	20
Двигателей	16,5	34
Сборочный легковых машин	-	23
Сборочный грузовых машин	16	-

Прибыль предприятия от реализации одной грузовой машины 20000 рублей, и одной легковой — 30000 рублей. Требуется составить месячный план выпуска легковых и грузовых машин, обеспечивающий максимальную прибыль.

19. Для осуществления буксирно-баржевых перевозок на трех линиях портовый флот располагает определенным числом барж четырех типов. По условиям эксплуатации буксирный воз для каждой линии должен состоять из определенного набора барж разных типов. Требуется распределить имеющиеся баржи по трем линиям так, чтобы общая грузоподъемность возов была наибольшей. Исходные данные указаны в табл. 18.

Таблица 18

	Грурононт омность	Сост			
	Грузоподъемность				
Тип баржи	баржи, т	1-я линия	2-я линия	3-я линия	Количество барж
1	300	2	2	2	30
2	500	1	2	2	20
3	600	4	0	4	36
4	800	0	4	0	$\overline{24}$

20. Заводу требуется составить оптимальный план выпуска двух видов моторов для автомобилей, которые обрабатываются на четырех видах машин. Известны определенные возможности и производительность оборудования; цена мотров, обеспечивающая прибыль заводу, составляет 4 тыс. руб. за изделие первого вида, 6 тыс. руб. — за изделие второго вида. Составить план выпуска этих моторов так, чтобы от реализации их завод получил наибольшую прибыль. В таблице указано время, необходимое для обработки каждого из двух видов моторов на оборудовании всех четырех видов (табл.19)

Таблица 19

Мотори	Время работы машин, час.			
Моторы	1	2	3	4
I	1	0,5	1	0
II	1	1	0	1
Возможное время работы машин, час.	18	12	12	9

21. Для осуществления перевозок по трем городским маршрутам используются автобусы двух типов. Автобусы первого типа вмещают 100 пассажиров, второго типа — 120 пассажиров. Количество автобусов на маршруте, необходимость в перевозке пассажиров, эксплуатационные расходы каждого вида автобусов даны в табл. 20.

Таблица 20

Маршруты	Количество автобусов на маршруте		Необходимо перевезти
	1-й тип 2-й тип		пассажиров не менее, чел.
1	4	5	8000
2	-	6	6000
3	2	-	4000

Эксплуатационные	5000	8000	
расходы за один рейс,			
руб.			

Определить, какое количество рейсов должно быть выполнено автобусами на каждом маршруте, чтобы суммарные расходы па перевозку были минимальными.

22. Химический комбинат выпускает порошок для очистки салона автомобиля двух видов, смешивая три ингредиента: растворитель, антистатик и активная добавка. В табл. 21 приведены нормы расхода ингредиентов, объем запасов каждого ингредиента и прибыль от реализации 1 т порошка каждого сорта.

Таблица 21

Ингредиенты	Нормы		
	1 -й вид порошка 2-й вид порошка		Объем запасов, т
Растворитель	0,5	0,2	600
Антистатик	0,2	0.6	870
Активная добавка	0,3	0,2	430
Прибыль от реализации 1 т продукции	320	280	

Требуется составить план производства порошка двух видов с целью максимизации суммарной прибыли.

23. Завод изготавливает автомобильные холодильники трех марок. В табл. 22 указаны нормы трудозатрат и затрат материалов, ограничения по этим ресурсам и прибыль от реализации холодильника каждой из марок.

Составить план выпуска холодильников, прибыль при этом плане должна быть максимальной.

Таблица 22

Наименование	Нормы затрат но маркам холодильников			Объем
pecypca	1 -я марка	2-я марка	3-я марка	pecypca
Трудозатраты	20	50	40	6000
Металл	10	20	15	4200
Пластик	1	3	5	2000
Краска	1	3	2	2500
Прибыль за ед.	2000	3000	3500	

24. На каждую автоколонну из 100 автомобилей, направляемых на перевозку грузов из района A, выделяются 1 передвижная мастерская, 2 автомобиля технической помощи и 2 мотоцикла из разъездных механиков, а из района B на такую же автоколонну – 2 передвижные мастерские, 1 автомобиль технической помощи и не выделяются мотоциклы. Ежедневно одна автоколонна из района A вывозит 3000 тыс. тонн груза, а из района В – 2.5 тыс. тонн груза. Необходимо определить какое количество автоколонн следует направить в каждый район, если имеется 1000 автомобилей, 16 передвижных мастерских, 16 автомобилей технической

помощи и 14 мотоциклов, чтобы обеспечить максимальный вывоз груза. Эти данные приведены в табл. 23.

Таблина 23

Количество подвижного состава в	Рай	Общее	
одной автоколонне, ед.	A	В	количество
Автомобили	100	100	1000
Передвижные мастерские	1	2	16
Автомобили технической помощи	2	1	16
Мотоциклы	2	-	14
Производительность одной	3,0	2,5	
автоколонны, тыс. т			

25. На некотором направлении автопредприятие должно перевезти четыре груза в количествах не менее тех, которые указаны в табл. 24. Для осуществления этих перевозок выделено два автомобиля. Данные по количеству груза, которое может принять каждый из автомобилей, и эксплуатационные расходы этих автомобилей указаны в табл. 88.

Таблица 24

Груз	Количество груза, пе	Количество груза, которое необходимо	
	1 -й автомобиль 2-й автомобиль		перевезти, т
1	4	5	2000
2	2	4	1200
3	1	4	800
4	3	-	900
Эксплуатационные расходы за рейс, руб.	14 000	18 000	

Требуется составить план, обеспечивающий перевозку грузов с наименьшими расходами.

- 26. Автомобильная компания производит легковые автомобили и грузовики. Каждое транспортное средство должно обрабатываться в покрасочном и сборочном цехах. Если бы в покрасочном цехе обрабатывались только грузовые автомобили, то можно было бы покрасить 40 машин в день, а если бы обрабатывались только легковые автомобили, то можно было бы покрасить 60 машин в день. В сборочном цехе обрабатывается 50 транспортных единиц в день. Прибыль от производства одного легкового и грузового автомобиля составляет 20000 и 30000 рублей соответственно. Определить ежедневный план выпуска легковых и грузовых машин, обеспечивающий достижение максимальной прибыли.
- 27. Автосборочный завод, выпускающий легковые и грузовые автомобили, имеет в своем составе четыре цеха, общий фонд рабочего времени которых указан в табл. 25. В ней также указаны затраты времени на выпуск одного автомобиля и прибыль от реализации одной автомашины. Требуется составить месячный план выпуска легковых и грузовых машин, обеспечивающий достижение максимальной прибыли.

Таблица 25

Цех	Затраты времени на	Максимальные	
	типа автомо	производственные	
	Грузовой	мощности, час	
Кузнечно-прессовый	10	9	400
Двигателей	14	15	380
Сборочный	11	17	400
Испытательный	8	10	80
Прибыль от реализации одной	25000	30000	
машины, руб.			

28. Три распределительных центра поставляют автомобили пяти дилерам. Автомобили от распределительных центров к дилерам перевозятся на трейлерах, и стоимость перевозок пропорциональна расстоянию между пунктами отправления и назначения и не зависит от степени загрузки трейлера. В табл. 26 приведены расстояния между распределительными центрами и дилерами, а также соответствующие величины спроса и предложения, выраженные в количестве автомобилей. При полной загрузке трейлер вмещает 18 автомобилей. Транспортные расходы составляют 250 руб. на 1 м км пути, пройденного трейлером. Требуется составить план поставки автомобилей автодилерам с наименьшими затратами.

Таблица 26

Центры		Дилеры			Предложение	
	1	2	3	4	5	
1	100	150	200	140	35	400
2	50	70	60	65	80	200
3	40	90	100	150	130	150
Спрос	100	200	150	160	140	

29. АООТ «Прицеп» выпускает 4,5-тонные прицепы и кормораздатчики «Ванюша» по цене 40,3 и 74,3 тыс. руб. соответственно. По результатам маркетинговых исследований спрос на изделия первого вида составляет не менее 1 200 ед. в год. Для производства прицепов используются сталь и чугун, запасы которых на предприятии составляют 25 000 и 4 500 т соответственно. Для изготовления 1 тыс. прицепов норма расхода стали составляет 1 615 т, а чугуна — 385 т. Для изготовления 1 тыс. кормораздатчиков расходуется: стали — 2 022 т, чугуна — 478 т. Себестоимость прицепов — 34,66, а кормораздатчиков — 63,9 тыс. руб. Найти оптимальное решение по производству прицепов и кормораздатчиков, чтобы:

- а) количество выпускаемых изделий было максимальным;
- б) выручка от выпускаемых изделий была максимальной;
- в) себестоимость выпускаемых изделий была минимальной.

30. Автотранспортное предприятие получило заказ на укомплектование трех строящихся объектов стройматериалами, производимыми на двух заводах. На первом заводе подготовлено к отправке 120 т стройматериалов, на втором — 180 т. На первый объект необходимо доставить 70 т строительных материалов. Второй и третий объекты нуждаются в получении 140 и 90 т указанного материала. В табл. 27 задано:

- а) доход от перевозки одной тонны стройматериалов с каждого завода к каждому строящемуся объекту, руб./т;
- б) стоимость перевозки одной тонны стройматериалов с каждого завода к каждому строящемуся объекту, руб./т.

Таблица 27

Завод	Объект		
	1	2	3
1	8	12	5
2	3	7	9

Составить оптимальный план перевозок:

- а) максимизирующий доход;
- б) минимизирующий стоимость.