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About the I1A-64 Application Developer’s
Architecture Guide 1

The |A-64 architecture is a unique combination of innovative features, such as explicit parallelism,
predication, speculation and much more. The architecture is designed to be highly scalable to fill
the ever increasing performance requirements of various server and workstation market segments.
The | A-64 architecture features arevolutionary 64-hit instruction set architecture (ISA) which
applies anew processor architecture technology called EPIC, or Explicitly Paralléel Instruction
Computing. A key feature of the |A-64 architecture is 1A-32 instruction set compatibility.

Thefirst part of this document (Part |, “IA-64 Application Architecture Guidgprovides a
comprehensive description of the | A-64 architecture which is exposed to application software. This
includes information on application level resources (registers, etc.), the application environment,
detailed application (non-privileged) instruction descriptions, formats and encodings. The |A-64
architecture supports | A-32 instruction set compatibility which is covered in this document.

The second portion of this document (Part Il, “IA-64 Optimization Guide’) providesarefresher on
the 1A-64 application architecture before describing certain | A-64 architectural features and
elaborates on applying these features to generate highly optimized code. Each section describes
how specific | A-64 features can be used to reduce or eliminate performance barriers.

Full details of the | A-64 programming environment including the system architecture and software
conventions will be provided in IA-64 Programmer’s Reference Manual to be available later.

1.1 Overview of the 1A-64 Application Developer’s
Architecture Guide

Chapter 1, “About the 1A-64 Application Developer’s Architecture Guid&Ves an overview of
this guide.

Chapter 2, “Introduction to the 1A-64 Processor ArchitectuRebvides an overview of key
features of IA-64 architecture.

Chapter 3, “IA-64 Execution EnvironmeniDescribes the IA-64 application architectural state
(registers, memory, etc.).

Chapter 4, “IA-64 Application Programming ModeDescribes the 1A-64 architecture from the
perspective of the application programmer. 1A-64 instructions are grouped into related functions
and an overview of their behavior is given.

Chapter 5, “IA-64 Floating-point Programming ModeThis chapter provides a description of
IA-64 floating-point registers, data types and formats and floating-point instructions.

Chapter 6, “IA-32 Application Execution Model in an 1A-64 System Environm@8iriti's chapter
describes execution of 1A-32 applications running in 1A-64 System Environment.

Chapter 7, “IA-64 Instruction ReferenceProvides detailed description of 1A-64 application
instructions, operation, and instruction format.

IA-64 Application Developer’s Architecture Guide, Rev. 1.0 1-1



intel.

Chapter 8, “About the 1A-64 Optimization Guide3ives an overview of the |1A-64 optimization
guide.

Chapter 9, “Introduction to 1A-64 ProgrammindProvides an overview of the IA-64 application
programming environment.

Chapter 10, “Memory ReferenceDiscusses features and optimizations related to control and data
speculation.

Chapter 11, “Predication, Control Flow, and Instruction Stre@mescribes optimization features
related to predication, control flow, and branch hints.

Chapter 12, “Software Pipelining and Loop Suppdetovides a detailed discussion on optimizing
loops through use of software pipelining.

Chapter 13, “Floating-point ApplicationsDiscusses current performance limitations in
floating-point applications and 1A-64 features that address these limitations.

Appendix A, “Instruction Sequencing Consideratiari3gscribes instruction sequencing in I1A-64
architecture.

Appendix B, “IA-64 Pseudo-Code Function®escribes pseudo-code functions usedhapter 7,
“IA-64 Instruction Reference”

Appendix C, “IA-64 Instruction FormatsDescribes the encoding and instruction format of
instructions covered iG@hapter 7

Terminology

The following definitions are for terms related to the |A-64 architecture and will be used in the rest
of this document:

Instruction Set Architecture (ISA) — Defines application and system level resources. These
resources include instructions and registers.

IA-64 Architecture — The new ISA with 64-bit instruction capabilities, new performance-
enhancing features, and support for the 1A-32 instruction set.

I A-32 Architecture — The 32-bit and 16-bit Intel Architecture as described in the Intel
Architecture Software Developer's Manual

| A-64 Processor —An Intel 64-bit processor that implements both the |A-64 and the 1A-32
instruction sets.

IA-64 System Environment —| A-64 operating system privileged environment that supports the
execution of both |A-64 and 1A-32 code.

IA-32 System Environment —Operating system privileged environment and resources as defined
by the Intel Architecture Software Developer’s Manugésources include virtual paging, control
registers, debugging, performance monitoring, machine checks, and the set of privileged
instructions.
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1.3 Related Documents

* Intel Architecture Software Developer’s Manual This reference set provides detailed
information on Intel 32-bit architecture and isreadily available from the Intel Literature
Center.
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Introduction to the IA-64 Processor
Architecture 2

2.1

The |A-64 architecture was designed to overcome the performance limitations of traditional
architectures and provide maximum headroom for the future. To achieve this, |A-64 was designed
with an array of innovative features to extract greater instruction level parallelism including:
speculation, predication, large register files, aregister stack, advanced branch architecture, and
many others. 64-bit memory addressability was added to meet the increasing large memory
footprint requirements of data warehousing, e-business, and other high performance server
applications. The IA-64 architecture has an innovative floating-point architecture and other
enhancements that support the high performance requirements of workstation applications such as
digital content creation, design engineering, and scientific analysis.

The | A-64 architecture also provides binary compatibility with the IA-32 instruction set. |A-64
processors can run | A-32 applications on an | A-64 operating system that supports execution of

I A-32 applications. 1A-64 processors can run 1A-32 application binaries on | A-32 legacy operating
systems assuming the platform and firmware support exists in the system. The |A-64 architecture
also provides the capability to support mixed |A-32 and | A-64 code execution.

|A-64 Operating Environments

The | A-64 architecture supports two operating system environments:
* |A-32 System Environment; supports |A-32 32-hit operating systems, and
* |A-64 System Environment: supports |A-64 operating systems.
The architectural model also supports a mixture of 1A-32 and | A-64 applications within asingle

| A-64 operating system. Table 2-1 defines the major operating environments supported on 1A-64
processors.

Table 2-1. IA-64 Processor Operating Environments

System Application
Environment Environment Usage
1A-32 IA-32 Instruction Set | IA-32 Protected Mode, Real Mode and Virtual 8086 Mode
application and operating system environment. Compatible with
IA-32 Pentium®, Pentium Pro, Pentium 11, and Pentium Il
processors.
1A-64 IA-32 Protected 1A-32 Protected Mode applications in the IA-64 system
Mode environment, if supported by OS.
IA-32 Real Mode IA-32 Real Mode applications in the IA-64 system environment, if
supported by OS.
1A-32 Virtual Mode IA-32 Virtual 86 Mode applications in the IA-64 system
environment, if supported by OS.
IA-64 Instruction Set | IA-64 Applications on |A-64 operating systems.
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2.2 Instruction Set Transition Model Overview

Within the 1A-64 System Environment, the processor can execute either 1A-32 or I1A-64
instructions at any time. Three special instructions and interruptions are defined to transition the
processor between the A-32 and the 1A-64 instruction set.

* j npe (IA-32 instruction) Jump to an | A-64 target instruction, and change the instruction set to
IA-64.

* br.ia (IA-64instruction) |A-64 branch to an | A-32 target instruction, and change the
instruction set to |A-32.

i Inte&ruptionstransition the processor to the | A-64 instruction set for handling al interruption
conditions.

e rfi (IA-64 instruction) “return from interruption”, is defined to return to an IA-32 or |IA-64
instruction.

Thej npe andbr . i a instructions provide a low overhead mechanism to transfer control between
the instruction sets. These instructions are typically incorporated into “thunks” or “stubs” that
implement the required call linkage and calling conventions to call dynamic or statically linked
libraries. Please refer ©hapter 6, “IA-32 Application Execution Model in an 1A-64 System
Environment“for additional details.

2.3 |A-64 Instruction Set Features

IA-64 incorporates architecture features which enable high sustained performance and remove
barriers to further performance increases. The 1A-64 architecture is based on the following
principles:

e Explicit parallelism
— Mechanisms for synergy between the compiler and the processor
— Massive resources to take advantage of instruction level parallelism
— 128 Integer and Floating-point registers, 64 1-bit predicate registers, 8 branch registers
— Support for many execution units and memory ports
¢ Features that enhance instruction level parallelism
— Speculation (which minimizes memory latency impact).
— Predication (which removes branches).
— Software pipelining of loops with low overhead
— Branch prediction to minimize the cost of branches
¢ Focussed enhancements for improved software performance
— Special support for software modularity
— High performance floating-point architecture
— Specific multimedia instructions

The following sections highlight these important features of 1A-64.
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2.5

2.6

2.6.1

Instruction Level Parallelism

Instruction Level Parallelism (ILP) is the ability to execute multiple instructions at the sametime.
The 1A-64 architecture allows issuing of independent instructionsin bundles (three instructions per
bundle) for parallel execution and can issue multiple bundles per clock. Supported by alarge
number of parallel resources such as large register files and multiple execution units, the |A-64
architecture enables the compiler to manage work in progress and schedul e simultaneous threads of
computation.

The | A-64 architecture incorporates mechanisms to take advantage of ILP. Compilers for
traditional architectures are often limited in their ability to utilize speculative information because
it cannot always be guaranteed to be correct. The | A-64 architecture enables the compiler to exploit
speculative information without sacrificing the correct execution of an application (see

Section 2.6). In traditional architectures, procedure calls limit performance since registers need be
spilled and filled. 1A-64 enables procedures to communicate register usage to the processor. This
allows the processor to schedule procedure register operations even when there is alow degree of
ILP. See Section 2.7, “Register Stack” on page .2-5

Compiler to Processor Communication

The 1A-64 architecture provides mechanisms, such as instruction templates, branch hints, and
cache hints to enable the compiler to communicate compile-time information to the processor. In
addition, IA-64 allows compiled code to manage the processor hardware using run-time
information. These communication mechanisms are vital in minimizing the performance penalties
associated with branches and cache misses.

Every memory load and store in I1A-64 has a 2-bit cache hint field in which the compiler encodes

its prediction of the spatial and/or temporal locality of the memory area being accessed. An IA-64
processor can use this information to determine the placement of cache lines in the cache hierarchy.
This leads to better utilization of the hierarchy since the relative cost of cache misses continues to
grow.

Speculation

There are two types of speculation: control and data. In both control and data speculation, the
compiler exposes ILP by issuing an operation early and removing the latency of this operation
from critical path. The compiler will issue an operation speculatively if it is reasonably sure that the
speculation will be beneficial. To be beneficial two conditions should hold: it must be statistically
frequent enough that the probability it will require recovery is small, and issuing the operation
early should expose further ILP-enhancing optimization. Speculation is one of the primary
mechanisms for the compiler to exploit statistical ILP by overlapping, and therefore tolerating, the
latencies of operations.

Control Speculation

Control speculation is the execution of an operation before the branch which guards it. Consider
the code sequence below:

if (a>b) load(ld_addrl,targetl)
el se | oad(ld_addr2, target?2)
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If the operation | oad(| d_addr 1, t ar get 1) were to be performed prior to the determination of
(a>b) , then the operation would be control speculative with respect to the controlling condition
(a>b) . Under normal execution, the operation | oad(| d_addr 1, t ar get 1) may or may not
execute. If the new control speculative load causes an exception then the exception should only be
serviced if (a>b) istrue. When the compiler uses control speculation it leaves a check operation at
the original location. The check verifies whether an exception has occurred and if so it branchesto
recovery code. The code sequence above now translates into:

/* off critical path */
sl oad(| d_addr 1, targetl)
sl oad(| d_addr 2, t ar get 2)

/* other operations including uses of targetl/target2 */
if (a>b) scheck(targetl, recovery_addrl)
el se scheck(target2, recovery_addr2)

Data Speculation

Data speculation is the execution of amemory load prior to a store that preceded it and that may
potentially alias with it. Data speculative loads are also referred to as “advanced loads”. Consider
the code sequence below:

store(st_addr, dat a)
| oad(1ld_addr, target)
use(target)

The process of determining at compile time the relationship between memory addresses is called
disambiguation. In the example abovéd,df addr andst _addr cannot be disambiguated, and if

the load were to be performed prior to the store, then the load would be data speculative with
respect to the store. If memory addresses overlap during execution, a data-speculative load issued
before the store might return a different value than a regular load issued after the store. Therefore
analogous to control speculation, when the compiler data speculates a load, it leaves a check
instruction at the original location of the load. The check verifies whether an overlap has occurred
and if so it branches to recovery code. The code sequence above now translates into:

/* off critical path */
al oad(| d_addr, target)

/* other operations including uses of target */
store(st_addr, dat a)

acheck(target, recovery_addr)
use(target)

Predication
Predication is the conditional execution of instructions. Conditional execution is implemented
through branches in traditional architectures. 1A-64 implements this function through the use of

predicated instructions. Predication removes branches used for conditional execution resulting in
larger basic blocks and the elimination of associated mispredict penalties.

To illustrate, an unpredicated instruction

rl =r2 +r3
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when predicated, would be of the form

if (pb5) r1 =r2 +r3

In this example p5 is the controlling predicate that decides whether or not the instruction executes
and updates state. If the predicate value is true, then the instruction updates state. Otherwise it
generaly behaveslike a nop. Predicates are assigned val ues by compare instructions.

Predicated execution avoids branches, and simplifies compiler optimizations by converting a
control dependence to a data dependence. Consider the original code:

if (a>b)

+ 1
el se d + f

cC =2¢
d* e
The branch at (a>b) can be avoided by converting the code above to the predicated code:

pT, pF = conpare(a>b)
i c +1
d* e+ f

-
—
©

_i
~

o

I

The predicate pT is set to 1 if the condition evaluates to true, and to O if the condition evaluatesto
false. The predicate pF is the complement of pT. The control dependence of theinstructionsc = ¢
+ landd = d * e + f onthebranch with the condition (a>b) isnow converted into adata
dependence on conpar e(a>b) through predicates pT and pF (the branch is eliminated). An added
benefit isthat the compiler can schedule the instructions under pT and pF to executein parallel. Itis
also worth noting that there are several different types of compare instructions that write predicates
in different manners including unconditional compares and parallel compares.

Register Stack

| A-64 avoids the unnecessary spilling and filling of registers at procedure call and return interfaces
through compiler-controlled renaming. At a call site, a new frame of registersis available to the

called procedure without the need for register spill and fill (either by the caller or by the calleg).

Register access occurs by renaming the virtual register identifiersin theinstructions through abase
register into the physical registers. The callee can freely use available registers without having to

spill and eventually restore the caller’s registers. The callee executesaninstruction

specifying the number of registers it expects to use in order to ensure that enough registers are
available. If sufficient registers are not available (stack overflow)lthec stalls the processor

and spills the caller’s registers until the requested number of registers are available.

At the return site, the base register is restored to the value that the caller was using to access
registers prior to the call. Some of the caller’s registers may have been spilled by the hardware and
not yet restored. In this case (stack underflow), the return stalls the processor until the processor
has restored an appropriate number of the caller’s registers. The hardware can exploit the explicit
register stack frame information to spill and fill registers from the register stack to memory at the
best opportunity (independent of the calling and called procedures).
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Branching

In addition to removing branches through the use of predication, several mechanisms are provided
to decrease the branch misprediction rate and the cost of the remaining mispredicted branches.
These mechanisms provide ways for the compiler to communicate information about branch
conditions to the processor.

For indirect branches, a branch register is used to hold the target address.

Special loop-closing branches are provided to accelerate counted |oops and modul o-scheduled
loops. These branches provide information that allows for perfect prediction of loop termination,
thereby eliminating costly mispredict penalties and areduction of the loop overhead.

Register Rotation

M odulo scheduling of aloop is analogous to hardware pipelining of afunctional unit since the next
iteration of theloop starts before the previousiteration hasfinished. Theiteration is split into stages
similar to the stages of an execution pipeline. Modulo scheduling allows the compiler to execute
loop iterationsin parallel rather than sequentially. The concurrent execution of multiple iterations
traditionally requires unrolling of the loop and software renaming of registers. |A-64 allows the
renaming of registers which provide every iteration with its own set of registers, avoiding the need
for unrolling. Thiskind of register renaming is called register rotation. The result is that software
pipelining can be applied to a much wider variety of loops - both small aswell as large with
significantly reduced overhead.

Floating-point Architecture

| A-64 defines a floating-point architecture with full IEEE support for the single, double, and
double-extended (80-hit) data types. Some extensions, such as a fused multiply and add operation,
minimum and maximum functions, and a register file format with alarger range than the
double-extended memory format, are also included. 128 floating-point registers are defined. Of
these, 96 registers are rotating (not stacked) and can be used to modulo schedul e loops compactly.
Muultiple floating-point status registers are provided for speculation.

I A-64 has parallel FP instructions which operate on two 32-bit single precision numbers, resident
in asingle floating-point register, in parallel and independently. These instructions significantly
increase the single precision floating-point computation throughput and enhance the performance
of 3D intensive applications and games.

Multimedia Support

| A-64 has multimediainstructions which treat the general registers as concatenations of eight 8-hit,
four 16-bit, or two 32-bit elements. These instructions operate on each element in parallel,

independent of the others. IA-64 multimedia instructions are semantically compatible with Intel's

MMX™ technology instructions and Streaming SIMD Extensions instruction technology.
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IA-64 Execution Environment 3

3.1

3.1.1

The architectural state consists of registers and memory. The results of instruction execution
become architecturally visible according to a set of execution sequencing rules. This chapter
describes the 1 A-64 application architectural state and the rules for execution sequencing.

Application Register State

Thefollowing isalist of the registers available to application programs (see Figure 3-1):

* General Registers(GRs) — General purpose 64-bit register file, GRO — GR127. I1A-32 integer
and segment registers are contained in GR8 - GR31 when executing 1A-32 instructions.

* Floating-point Registers (FRs) — Floating-point register file, FRO — FR127. IA-32
floating-point and multi-media registers are contained in FR8 - RR@h executing 1A-32
instructions.

* Predicate Registers (PRs) — Single-bit registers, used in IA-64 predication and branching,
PRO — PR63.

* Branch Registers (BRs) — Registers used in IA-64 branching, BRO — BR7.

¢ Instruction Pointer (1P) — Register which holds the bundle address of the currently executing
IA-64 instruction, or byte address of the currently executing 1A-32 instruction.

* Current Frame Marker (CFM) — State that describes the current general register stack
frame, and FR/PR rotation.

* Application Registers (ARs) — A collection of special-purpose 1A-64 and 1A-32 application
registers.

* Performance Monitor Data Registers (PM D) — Data registers for performance monitor
hardware.

¢ User Mask (UM) — A set of single-bit values used for alignment traps, performance monitors,
and to monitor floating-point register usage.

* Processor |dentifiers (CPUID) — Registers that describe processor
implementation-dependent 1A-64 features.

IA-32 application register state is entirely contained within the larger IA-64 application register set
and is accessible by IA-64 instructions. 1A-32 instructions cannot access the 1A-64 specific register
set.

Reserved and Ignored Registers

Registers which are not defined are either reserved or ignored. An accessetoeal register

raises an lllegal Operation fault. A read ofigmored register returns zero. Software may write

any value to an ignored register and the hardware will ignore the value written. In variable-sized
register sets, registers which are unimplemented in a particular processor are also reserved
registers. An access to one of these unimplemented registers causes a Reserved Register/Field
fault.
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Within defined registers, fields which are not defined are either reserved or ignored. For reserved
fields, hardware will always return a zero on aread. Software must always write zeros to these
fields. Any attempt to write a non-zero value into a reserved field will raise a Reserved register/
field fault. Reserved fields may have a possible future use.

For ignored fields, hardware will return a0 on aread, unless noted otherwise. Software may write
any value to these fields since the hardware will ignore any value written. Except where noted
otherwise some | A-32 ignored fields may have a possible future use.

Table 3-1 summarizes how the processor treats reserved and ignored registers and fields.

Reserved and Ignored Registers and Fields

Type Read Write
Reserved register lllegal operation fault lllegal operation fault
Ignored register 0 Value written is discarded
Reserved field 0 Write of non-zero causes Reserved Reg/Field fault
Ignored field 0 (unless noted otherwise) | Value written is discarded

For defined fields in registers, values which are not defined are reserved. Software must always
write defined values to these fields. Any attempt to write areserved value will raise a Reserved
Register/Field fault. Certain registers are read-only registers. A write to aread-only register raises
an lllegal Operation fault.

When fields are marked asreserved, it is essentia for compatibility with future processors that
software treat these fields as having afuture, though unknown effect. Software should follow these
guidelines when dealing with reserved fields:

¢ Do not depend on the state of any reserved fields. Mask all reserved fields before testing.
* Do not depend on the states of any reserved fields when storing to memory or aregister.
¢ Do not depend on the ability to retain information written into reserved or ignored fields.

* Where possible reload reserved or ignored fields with values previously returned from the
same register, otherwise load zeros.

General Registers

A set of 128 (64-hit) general registers provide the central resource for all integer and integer
multimedia computation. They are numbered GRO through GR127, and are available to all
programs at all privilege levels. Each general register has 64 bits of normal data storage plus an
additional bit, the NaT bit (Not a Thing), which is used to track deferred specul ative exceptions.

The general registers are partitioned into two subsets. General registers 0 through 31 are termed the
static general registers. Of these, GRO is special inthat it always reads as zero when sourced as an
operand and attempting to write to GR 0 causes an Illegal Operation fault. General registers 32
through 127 are termed the stacked general registers. The stacked registers are made available to
aprogram by allocating aregister stack frame consisting of a programmable number of local and
output registers. See Chapter 4.1 for adescription. A portion of the stacked registers can be
programmatically renamed to accel erate loops. See “Modulo-Scheduled Loop Support” on
page 4-26
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Figure 3-1. Application Register Model
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General registers 8 through 31 contain the |A-32 integer, segment selector and segment descriptor
registers when executing 1A-32 instructions.
3.1.3 Floating-point Registers

A set of 128 (82-hit) floating-point registersare used for all floating-point computation. They are
numbered FRO through FR127, and are available to all programs at all privilege levels. The
floating-point registers are partitioned into two subsets. Floating-point registers 0 through 31 are
termed the static floating-point registers. Of these, FRO and FR1 are special. FRO always reads as
+0.0 when sourced as an operand, and FR 1 always reads as +1.0. When either of theseisused asa
destination, afault israised. Deferred speculative exceptions are recorded with a special register

value called NaTVal (Not a Thing Value).

Floating-point registers 32 through 127 are termed the rotating floating-point registers. These
registers can be programmatically renamed to accel erate loops. See “Modulo-Scheduled Loop
Support” on page 4-26

Floating-point registers 8 through 31 contain the IA-32 floating-point and multi-media registers
when executing | A-32 instructions.
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Predicate Registers

A set of 64 (1-bit) predicate registers are used to hold the results of 1A-64 compare instructions.
These registers are numbered PRO through PR63, and are available to all programs at all privilege
levels. These registers are used for conditional execution of instructions.

The predicate registers are partitioned into two subsets. Predicate registers 0 through 15 are termed

the static predicateregisters. Of these, PRO always reads as ‘1’ when sourced as an operand, and
when used as a destination, the result is discarded. The static predicate registers are also used in
conditional branching. Sé@redication” on page 4-7

Predicate registers 16 through 63 are termeddtating predicate registers. These registers can
be programmatically renamed to accelerate loops'8edulo-Scheduled Loop Support” on
page 4-26

Branch Registers

A set of 8 (64-bithranch registers are used to hold 1A-64 branching information. They are

numbered BR 0 through BR 7, and are available to all programs at all privilege levels. The branch
registers are used to specify the branch target addresses for indirect branches. For more information
see"Branch Instructions” on page 4-24

Instruction Pointer

The Instruction Pointer (IP) holds the address of the bundle which contains the current executing
IA-64 instruction. The IP can be read directly with a mov ip instruction. The IP cannot be directly
written, but is incremented as instructions are executed, and can be set to a new value with a
branch. Because IA-64 instruction bundles are 16 bytes, and are 16-byte aligned, the least
significant 4 bits of IP are always zero. Skwstruction Encoding Overview” on page 3-1Hor

IA-32 instruction set execution, IP holds the zero extended 32-bit virtual linear address of the
currently executing IA-32 instruction. IA-32 instructions are byte-aligned, therefore the least
significant 4 bits of IP are preserved for IA-32 instruction set execution.

Current Frame Marker

Each general register stack frame is associated with a frame marker. The frame marker describes
the state of the IA-64 general register stack. The Current Frame Marker (CFM) holds the state of
the current stack frame. The CFM cannot be directly read or writtetiRsgéster Stack” on

page 4-1.

The frame markers contain the sizes of the various portions of the stack frame, plus three Register
Rename Base values (used in register rotation). The layout of the frame markers is shown in
Figure 3-2and the fields are describedTiable 3-2

On a call, the CFM is copied to the Previous Frame Marker field in the Previous Function State
register (se&ection 3.1.8.10 A new value is written to the CFM, creating a new stack frame with
no locals or rotating registers, but with a set of output registers which are the caller’s output
registers. Additionally, all Register Rename Base registers (RRBs) are set to 0. See
“Modulo-Scheduled Loop Support” on page 4-26
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Figure 3-2. Frame Marker Format

37 32 31 25 24 18 17 14 13 7 6 0
rrb.pr rrb.gr sor sol sof
6 7 4 7 7
Table 3-2. Frame Marker Field Description
Field Bit Range Description
sof 6:0 Size of stack frame
sol 13:7 Size of locals portion of stack frame
sor 17:14 Size of rotating portion of stack frame
(the number of rotating registers is 8 * sor)
rrb.gr 24:18 Register Rename Base for general registers
rrb.fr 31:25 Register Rename Base for floating-point registers
rrb.pr 37:32 Register Rename Base for predicate registers

3.1.8 Application Registers

The application register file includes special-purpose data registers and control registers for
application-visible processor functions for both the |A-32 and | A-64 instruction sets. These
registers can be accessed by |A-64 application software (except where noted). Table 3-3 contains a
list of the application registers.

Application registers can only be accessed by either aM or | execution unit. Thisis specified inthe
last column of the table. The ignored registers are for future backward-compatible extensions.
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Execution Unit

Register Name Description Type
AR 0-7 KR 0-72 Kernel Registers 0-7
AR 8-15 Reserved
AR 16 RSC Register Stack Configuration Register
AR 17 BSP Backing Store Pointer (read-only)
AR 18 BSPSTORE Backing Store Pointer for Memory Stores
AR 19 RNAT RSE NAT Collection Register
AR 20 Reserved
AR 21 FCR IA-32 Floating-point Control Register
AR 22 — AR 23 Reserved
AR 24 EFLAGP IA-32 EFLAG register
AR 25 Csb IA-32 Code Segment Descriptor
AR 26 SSD IA-32 Stack Segment Descriptor
AR 27 CFLG? IA-32 Combined CRO and CR4 register M
AR 28 FSR IA-32 Floating-point Status Register
AR 29 FIR IA-32 Floating-point Instruction Register
AR 30 FDR IA-32 Floating-point Data Register
AR 31 Reserved
AR 32 ccv Compare and Exchange Compare Value Register
AR 33-AR 35 Reserved
AR 36 UNAT User NAT Collection Register
AR 37 — AR 39 Reserved
AR 40 FPSR Floating-point Status Register
AR 41 — AR 43 Reserved
AR 44 ITC Interval Time Counter
AR 45 — AR 47 Reserved
AR 48 — AR 63 Ignored Morl
AR 64 PFS Previous Function State
AR 65 LC Loop Count Register
AR 66 EC Epilog Count Register !
AR 67 — AR 111 Reserved
AR 112 — AR 127 Ignored Morl

a. Writes to these registers when the privilege level is not zero result in a Privileged Register fault. Reads are always allowed.
b. Some IA-32 EFLAG field writes are silently ignored if the privilege level is not zero.
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3.1.8.1 Kernel Registers (KR 0-7 —AR 0-7)

Eight user-visible | A-64 64-bit data kernel registers are provided to convey information from the
operating system to the application. These registers can be read at any privilege level but are
writable only at the most privileged level. KRO - KR2 are also used to hold additional 1A-32
register state when the |A-32 instruction set is executing.

3.1.8.2 Register Stack Configuration Register (RSC —AR 16)

The Register Stack Configuration (RSC) Register is a 64-bit register used to control the operation
of the |A-64 Register Stack Engine (RSE). The RSC format is shown in Figure 3-3 and the field
description is contained in Table 3-4. Instructions that modify the RSC can never set the privilege
level field to amore privileged level than the currently executing process.

Figure 3-3. RSC Format

63 30 29 16 15 5 4 3 2 1 0
rv loadrs rv ‘be‘ pl ‘mode‘
34 14 11 1 2 2
Table 3-4. RSC Field Description
Field Bit Range Description
mode 1:0 RSE mode — controls how aggressively the RSE saves and restores register
frames. Eager and intensive settings are hints and can be implemented as
lazy.
Bit Pattern RSE Mode Bit 1: eager loads | Bit O: eager stores
00 enforced lazy disabled disabled
10 load intensive enabled disabled
01 store intensive disabled enabled
11 eager enabled enabled
pl 3:2 RSE privilege level — loads and stores issued by the RSE are at this privilege
level
be 4 RSE endian mode — loads and stores issued by the RSE use this byte ordering
(O: little endian; 1: big endian)
loadrs 29:16 RSE load distance to tear point — value used in the | oadr s instruction for
synchronizing the RSE to a tear point
rv 15:5, 63:30 | Reserved

3.1.8.3 RSE Backing Store Pointer (BSP —AR 17)

The RSE Backing Store Pointer is a 64-bit read-only register (Figure 3-4). It holds the address of
the location in memory which is the save location for GR 32 in the current stack frame.

Figure 3-4. BSP Register Format

63 3 210
pointer ’ ig ‘
61 3
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RSE Backing Store Pointer for Memory Stores (BSPSTORE —AR 18)

The RSE Backing Store Pointer for memory storesis a 64-bit register (Figure 3-5). It holds the
address of the location in memory to which the RSE will spill the next value.

Figure 3-5. BSPSTORE Register Format

3.1.8.5

3 2 10
‘ pointer ‘ ig ‘
61 3

RSE NAT Collection Register (RNAT —AR 19)

The RSE NaT Collection Register is a 64-bit register (Figure 3-6) used by the RSE to temporarily
hold NaT bitswhen it is spilling general registers. Bit 63 always reads as zero and ignores all
writes.

Figure 3-6. RNAT Register Format

3.1.8.6

3.1.8.7

3.1.8.8

3.1.8.9

3-8

RSE NaT Collection
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1

63

Compare and Exchange Value Register (CCV —AR 32)

The Compare and Exchange Value Register is a 64-bit register that contains the compare value
used as the third source operand in the |A-64 cnpxchg instruction.

User NAT Collection Register (UNAT —AR 36)

The User NaT Collection Register is a 64-bit register used to temporarily hold NaT bits when
saving and restoring general registerswiththelA-641d8. fill andst 8. spil | instructions.

Floating-point Status Register (FPSR —AR 40)

The floating-point status register (FPSR) controls traps, rounding mode, precision control, flags,
and other control bits for |A-64 floating-point instructions. FPSR does not control or reflect the
status of 1A-32 floating-point instructions. For more details on the FPSR, see Section 5.2.

Interval Time Counter (ITC —AR 44)

The Interval Time Counter (ITC) is a64-hit register which counts up at a fixed relationship to the
processor clock frequency. Applications can directly sample the ITC for time-based cal culations
and performance measurements. System software can secure the interval time counter from
non-privileged 1A-64 access. When secured, aread of the ITC at any privilege level other than the
most privileged causes a Privileged Register fault. The ITC can be written only at the most
privileged level. The 1A-32 Time Stamp Counter (TSC) isequivalent to ITC. ITC can directly be
read by the IA-32 r dt sc (read time stamp counter) instruction. System software can secure the
ITC from non-privileged | A-32 access. When secured, an |A-32 read of the ITC at any privilege
level other than the most privileged raises an 1A-32_Exception(GPfault).
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Previous Function State (PFS —AR 64)

The |A-64 Previous Function State register (PFS) contains multiple fields: Previous Frame Marker
(pfm), Previous Epilog Count (pec), and Previous Privilege Level (ppl). Figure 3-7 diagrams the
PFS format and Table 3-5 describes the PFS fields. These values are copied automatically on acall
from the CFM register, Epilog Count Register (EC) and PSR.cpl (Current Privilege Level in the
Processor Status Register) to accel erate procedure calling.

WhenanlA-64br. cal | isexecuted, the CFM, EC, and PSR.cpl are copied to the PFS and the old
contents of the PFS are discarded. When an |A-64 br . r et is executed, the PFSis copied to the
CFM and EC. PFS.ppl is copied to PSR.cpl, unless this action would increase the privilege level.

The PFS.pfm has the same layout as the CFM (see Section 3.1.7), and the PFS.pec has the same
layout asthe EC (see Section 3.1.8.12).

Figure 3-7. PFS Format

6362 61 58 57 52 51 38 37 0

rv ‘ pec ‘ rv pfm

L
2

4 6 14 38

Table 3-5. PFS Field Description

3.1.8.11

3.1.8.12

Field Bit Range Description
pfm 37:0 Previous Frame Marker
pec 57:52 Previous Epilog Count
ppl 63:62 Previous Privilege Level
rv 51:38, 61:58 Reserved

Loop Count Register (LC —AR 65)

The Loop Count register (LC) is a 64-bit register used in 1A-64 counted loops. LC is decremented
by counted-loop-type branches.

Epilog Count Register (EC —AR 66)

The Epilog Count register (EC) is a 6-hit register used for counting the final (epilog) stagesin
| A-64 modul o-scheduled loops. See “Modulo-Scheduled Loop Support” on page 4-26diagram
of the EC register is shown kigure 3-8

Figure 3-8. Epilog Count Register Format

3.1.9

6 5 0

ig ‘ epilog count

58 6

Performance Monitor Data Registers (PMD)

A set of performance monitoring registers can be configured by privileged software to be
accessible at all privilege levels. Performance monitor data can be directly sampled from within the
application. The operating system is allowed to secure user-configured performance monitors.
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Secured performance counters return zeros when read, regardless of the current privilegelevel. The
performance monitors can only be written at the most privileged level. Performance monitors can
be used to gather performance information for both 1A-32 and 1A-64 instruction set execution.

User Mask (UM)

The user mask is a subset of the Processor Status Register and is accessible to 1A-64 application
programs. The user mask controls memory access alignment, byte-ordering and user-configured
performance monitors. It also records the modification state of 1A-64 floating-point registers.
Figure 3-9 show the user mask format and Table 3-6 describes the user mask fields.

Figure 3-9. User Mask Format

5 4 3 2 1 o0
‘mfh’mfl’ ac ’ up‘be‘ rv ‘
1

Table 3-6. User Mask Field Descriptions

3.1.11

3-10

Field Bit Range Description
rv 0 Reserved
be 1 IA-64 Big-endian memory access enable

(controls loads and stores but not RSE memory accesses)

0: accesses are done little-endian

1: accesses are done big-endian

This bit is ignored for 1A-32 data memory accesses. |1A-32 data references are
always performed little-endian.

up 2 User performance monitor enable for IA-32 and 1A-64 instruction set execution
0: user performance monitors are disabled
1: user performance monitors are enabled

ac 3 Alignment check for IA-32 and 1A-64 data memory references

0: unaligned data memory references may cause an Unaligned Data Reference
fault.

1: all unaligned data memory references cause an Unaligned Data Reference fault.

mfl 4 Lower (f2 .. f31) floating-point registers written — This bit is set to one when an IA-64
instruction that uses register f2..f31 as a target register, completes. This bit is sticky
and is only cleared by an explicit write of the user mask.

mfh 5 Upper (f32 .. f127) floating-point registers written — This bit is set to one when an
IA-64 instruction that uses register f32..f127 as a target register, completes. This bit
is sticky and only cleared by an explicit write of the user mask.

Processor Identification Registers

Application level processor identification information is available in an 1A-64 register file termed:
CPUID. Thisregister fileisdivided into afixed region, registers 0 to 4, and a variable region,
register 5 and above. The CPUID[3].number field indicates the maximum number of 8-byte
registers containing processor specific information.

The CPUID registers are unprivileged and accessed using the indirect mov (from) instruction. All

registers beyond register CPUID[3].number are reserved and raise a Reserved Register/Field fault
if they are accessed. Writes are not permitted and no instruction exists for such an operation.
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Vendor information islocated in CPUID registers 0 and 1 and specify avendor name, in ASCII, for
the processor implementation (Figure 3-10). All bytes after the end of the string up to the 16th byte
are zero. Earlier ASCII characters are placed in lower number register and lower numbered byte

positions.

Figure 3-10. CPUID Registers 0 and 1 —Vendor Information

63

CPUIDIO0] \ \

| | | | | | byteo |

CPUID[l]‘ byte 15 \

64

A Processor Serial Number islocated in CPUID register 2. If Processor Serial Numbers are
supported by the processor model and are not disabled, this register returns a 64-bit number
Processor Serial Number (Figure 3-11), otherwise zero is returned. The Processor Serial Number
(64-bits) must be combined with the 32-bit version information (CPUID register 3; processor
archrev, family, model, and revision numbers) to form a 96-bit Processor Identifier.

The 96-bit Processor Identifier is designed to be unique.

Figure 3-11. CPUID Register 2 —Processor Serial Number

63 0
Processor Serial Number
64
CPUID register 3 contains several fields indicating version information related to the processor
implementation. Figure 3-12 and Table 3-7 specify the definitions of each field.
Figure 3-12. CPUID Register 3 —Version Information
63 40 39 32 31 24 23 16 15 8 7 0
rv archrev family model revision number
24 8 8 8 8 8
Table 3-7. CPUID Register 3 Fields
Field Bits Description
number 7:0 The index of the largest implemented CPUID register (one less than the number of
implemented CPUID registers). This value will be at least 4.
revision 15:8 Processor revision number. An 8-bit value that represents the revision or stepping of
this processor implementation within the processor model.
model 23:16 | Processor model number. A unique 8-bit value representing the processor model within
the processor family.
family 31:24 Processor family number. A unique 8-bit value representing the processor family.
archrev 39:32 | Architecture revision. An 8-bit value that represents the architecture revision number
that the processor implements.
rv 63:40 | Reserved.

CPUID register 4 provides general application level information about | A-64 features. Asshownin
Figure 3-13, it isa set of flag bits used to indicate if a given |A-64 feature is supported in the
processor model. When a bit is one the feature is supported; when 0 the feature is not supported.
Thisregister does not contain |A-32 instruction set features. | A-32 instruction set features can be
acquired by the |A-32 cpui d instruction. There are no defined feature bits in the current
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architecture. As new features are added (or removed) from future processor models the presence
(or removal) of new features will be indicated by new feature bits. A value of zero in this register
indicates all features defined in the first |A-64 architectural revision are implemented.

Figure 3-13. CPUID Register 4 —General Features/Capability Bits

3.2

3.2.1

3.2.2

3.2.3

3-12

v

64

Memory

This section describes an | A-64 application program’s view of memory. This includes a description
of how memory is accessed, for both 32-bit and 64-bit applications. The size and alignment of
addressable units in memory is also given, along with a description of how byte ordering is
handled.

Application Memory Addressing Model

Memory is byte addressable and is accessed with 64-bit pointers. A 32-bit pointer model without a
hardware mode is supported architecturally. Pointers which are 32 bits in memory are loaded and
manipulated in 64-bit registers. Software must explicitly convert 32-bit pointers into 64-bit

pointers before use.

Addressable Units and Alignment

Memory can be addressed in units of 1, 2, 4, 8, 10 and 16 bytes.

It is recommended that all addressable units be stored on their naturally aligned boundaries.
Hardware and/or operating system software may have support for unaligned accesses, possibly
with some performance cost. 10-byte floating-point values should be stored on 16-byte aligned
boundaries.

Bits within larger units are always numbered from O starting with the least-significant bit.
Quantities loaded from memory to general registers are always placed in the least-significant
portion of the register (loaded values are placed right justified in the target general register).

Instruction bundles (3 IA-64 instructions per bundle) are 16-byte units that are always aligned on
16-byte boundaries.

Byte Ordering

The UM.be bit in the User Mask controls whether loads and stores use little-endian or big-endian
byte ordering for IA-64 references. When the UM.be bit is 0, larger-than-byte loads and stores are
little endian (lower-addressed bytes in memory correspond to the lower-order bytes in the register).
When the UM.be bit is 1, larger-than-byte loads and stores are big endian (lower-addressed bytes in
memory correspond to the higher-order bytes in the register). Load byte and store byte are not
affected by the UM.be bit. The UM.be bit does not affect instruction fetch, IA-32 references, or the
RSE. IA-64 instructions are always accessed by the processor as little-endian units. When
instructions are referenced as big-endian data, the instruction will appear reversed in a register.
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Figure 3-14 shows various loads in little-endian format. Figure 3-15 shows various loads in big
endian format. Stores are not shown but behave similarly.

Figure 3-14. Little-endian Loads

Memory Registers
7 0 63 0
Add(;ess N ip=>|0|o|o|o|o|o]o]lob
1 b
63 0
2 c
LD2[2]=> | O 0 0 0 0 0 d c
3 d
4 e 63 0
5 f LD4[4=>| 0| 0| O0O| O | h|g]| f]e
6 g
7 h 63 0
LD8[0]=> | h g f e d C b a

Figure 3-15. Big-endian Loads

Memory Registers
Address 7 0 63 0
0 a LD1[1]=> | ©O 0 0 0 0 0 0 b
1 b
2 c 63 0
3 d LD2 [2] => 0 0 0 0 0 0 c d
4 e
63 0
5 f
LD4 [4] => 0 0 0 0 e f g h
6 g
7 h 63 0
LD8 [0] => a b c d e f g h
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3.3 Instruction Encoding Overview

Each |A-64 instruction is categorized into one of six types; each instruction type may be executed
on one or more execution unit types. Table 3-8 lists the instruction types and the execution unit
type on which they are executed:

Table 3-8. Relationship Between Instruction Type and Execution Unit Type

InsErr;Jpc;ion Description Execution Unit Type
A Integer ALU I-unit or M-unit
| Non-ALU integer l-unit
M Memory M-unit
F Floating-point F-unit
B Branch B-unit
L+X Extended l-unit

Three instructions are grouped together into 128-bit sized and aligned containers called bundles.
Each bundle contains three 41-bit instruction slots and a 5-bit template field. The format of a
bundleis depicted in Figure 3-16.

Figure 3-16. Bundle Format

127 87 86 46 45 5 4 0
instruction slot 2 instruction slot 1 instruction slot 0 ‘template‘
41 41 41 5

During execution, architectural stopsin the program indicate to the hardware that one or more
instructions before the stop may have certain kinds of resource dependencies with one or more
instructions after the stop. A stop is present after each slot having adouble line to theright of itin
Table 3-9. For example, template 00 has no stops, while template 03 has a stop after slot 1 and
another after slot 2.

In addition to the location of stops, the template field specifies the mapping of instruction slots to
execution unit types. Not all possible mappings of instructionsto units are available. Table 3-9
indicates the defined combinations. The three rightmost columns correspond to the three
instruction slotsin abundle. Listed within each column isthe execution unit type controlled by that
instruction dlot.

Table 3-9. Template Field Encoding and Instruction Slot Mapping?

Template Slot 0 Slot 1 Slot 2
00 M-unit l-unit l-unit
01 M-unit I-unit I-unit H
02 M-unit l-unit l-unit |
03 M-unit I-unit I-unit H
04 M-unit L-unit X-unit |
05 M-unit L-unit X-unit H
06
07
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Table 3-9. Template Field Encoding and Instruction Slot Mapping? (Cont’d)

3.4

Template Slot 0 Slot 1 Slot 2
08 M-unit M-unit l-unit
09 M-unit M-unit I-unit H
0A M-unit M-unit l-unit ‘
0B M-unit M-unit I-unit H
oc M-unit F-unit l-unit ‘
oD M-unit F-unit I-unit H
OE M-unit M-unit F-unit ‘
OF M-unit M-unit F-unit H
10 M-unit l-unit B-unit ‘
1 M-unit I-unit B-unit H
12 M-unit B-unit B-unit ‘
13 M-unit B-unit B-unit H
14
15
16 B-unit B-unit B-unit
17 B-unit B-unit B-unit H
18 M-unit M-unit B-unit ‘
19 M-unit M-unit B-unit H
1A
1B
1C M-unit F-unit B-unit
1D M-unit F-unit B-unit H
1E
1F

a. Extended instructions, used for long immediate integer, occupy two instruction slots.

Instruction Sequencing

An 1A-64 program consists of a sequence of instructions and stops packed in bundles. Instruction
execution is ordered as follows:

* Bundles are ordered from lowest to highest memory address. Instructions in bundles with
lower memory addresses are considered to precede instructions in bundles with higher
memory addresses. The byte order of each bundle in memory is little-endian (the template
field is contained in byte 0 of abundle).

¢ Within abundle, instructions are ordered from instruction slot O to instruction slot 2 as
specified in Figure 3-16.

For additional details on Instruction sequencing, refer to Appendix A, “Instruction Sequencing
Considerations”
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IA-64 Application Programming
Model 4

4.1

4.1.1

This section describes the | A-64 architectural functionality from the perspective of the application
programmer. 1A-64 instructions are grouped into related functions and an overview of their
behavior is given. Unless otherwise noted, all immediates are sign extended to 64 bits before use.
Thefloating-point programming model is described separately in Chapter 5, “IA-64 Floating-point
Programming Model”

The main features of the I1A-64 programming model covered here are:
* General Register Stack
* Integer Computation Instructions
¢ Compare Instructions and Predication
* Memory Access Instructions and Speculation
¢ Branch Instructions and Branch Prediction
* Multimedia Instructions
* Register File Transfer Instructions
* Character Strings and Population Count

Register Stack

Asdescribed in “General Registers” on page 3iBe general register file is divided into static and
stacked subsets. The static subset is visible to all procedures and consists of the 32 registers from
GR 0 through GR 31. The stacked subset is local to each procedure and may vary in size from zero
to 96 registers beginning at GR 32. The register stack mechanism is implemented by renaming
register addresses as a side-effect of procedure calls and returns. The implementation of this
rename mechanism is not otherwise visible to application programs. The register stack is disabled
during IA-32 instruction set execution.

The static subset must be saved and restored at procedure boundaries according to software
convention. The stacked subset is automatically saved and restored by the Register Stack Engine
(RSE) without explicit software intervention. All other register files are visible to all procedures
and must be saved/restored by software according to software convention.

Register Stack Operation

The registers in the stacked subset visible to a given procedure are called a register stack frame.
The frame is further partitioned into two variable-size areas: the local area and the output area.
Immediately after a call, the size of the local area of the newly activated frame is zero and the size
of the output area is equal to the size of the caller’s output area and overlays the caller’s output
area.

The local and output areas of a frame can be re-sized usiagltbe instruction which specifies
immediates that determine the size of frame (sof) and size of locals (sol).
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In the assembly language, al | oc specifies three operands: the size of inputsimmediate; the size of
locals immediate; and the size of outputs immediate. The value of sol is determined by adding the
size of inputs immediate and the size of locals immediate; the value of sof is determined by adding
all three immediates.

The value of sof specifies the size of the entire stacked subset visible to the current procedure; the
value of sol specifiesthe size of the local area. The size of the output areais determined by the
difference between sof and sol. The values of these parameters for the currently active procedure
are maintained in the Current Frame Marker (CFM).

Reading a stacked register outside the current frame will return an undefined result. Writing a
stacked register outside the current frame will cause an Illegal Operation fault.

When a call-type branch is executed, the CFM is copied to the Previous Frame Marker (PFM) field
in the Previous Function State application register (PFS), and the callee’s frame is created as
follows:

* The stacked registers are renamed such that the first register in the caller’s output area
becomes GR 32 for the callee.

* Thesize of thelocal areais set to zero.
* The size of the callee’s frame (gofis set to the size of the caller’s output area,(safo},).

Values in the output area of the caller’s register stack frame are visible to the callee. This overlap
permits parameter and return value passing between procedures to take place entirely in registers.

Procedure frames may be dynamically re-sized by issuimagjlast instruction. Anal | oc

instruction causes no renaming, but only changes the size of the register stack frame and the
partitioning between local and output areas. Typically, when a procedure is called, it will allocate
some number of local registers for its use (which will include the parameters passed to it in the
caller’s output registers), plus an output area (for passing parameters to procedures it will call).
Newly allocated registers (including their NaT bits) have undefined values.

When a return-type branch is executed, CFM is restored from PFM and the register renaming is
restored to the caller’s configuration. The PFM is procedure local state and must be saved and
restored by non-leaf procedures. The CFM is not directly accessible in application programs and is
updated only through the execution of calls, retushspc, andcl rrrb.

Figure 4-1depicts the behavior of the register stack on a procedure call from procA (caller) to

procB (callee). The state of the register stack is shown at four points: prior to the call, immediately
following the call, after procB has executedahhoc, and after procB returns to procA.
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Figure 4-1. Register Stack Behavior on Procedure Call and Return

Instruction Execution Stacked GRs Frame Markers
CFM PFM
32 46 52 sol sof sol sof
Caller’s frame (procA) Local A Output A 14 21 X X
j—»‘ sof,=21
call sol,=14 | 2
v l32 38
Callee’s frame (procB)
after call Output By 0 7| |14 21
‘ &
alloc | SOfpy=7
v |32 48 50
Callee’s frame (procB)
after alloc Local B Output B, 16 19| |14 21
|< — >
- » SOfyy=19
return | sol,,=16
|
v 32 46 52
Caller’s frame (procA)
after return Local A Output A 14 21 14 21

4.1.2

The majority of application programs need only issue al | oc instructions and save/restore PFM in
order to effectively utilize the register stack. A detailed knowledge of the RSE (Register Stack
Engine) is required only by certain specialized application software such as user-level thread
packages, debuggers, etc.

Register Stack Instructions

Theal | oc instruction is used to change the size of the current register stack frame. Anal | oc
instruction must be the first instruction in an instruction group otherwise the results are undefined.
Anal | oc instruction affects the register stack frame seen by al instructions in an instruction
group, including the al | oc itself. Anal | oc cannot be predicated. An al | oc does not affect the
values or NaT hits of the allocated registers. When aregister stack frame is expanded, newly
allocated registers may have their NaT bit set.

In addition, there are three instructions which provide explicit control over the state of the register
stack. These instructions are used in thread and context switching which necessitate a
corresponding switch of the backing store for the register stack.

Thef |l ushrs instruction is used to force al previous stack frames out to backing store memory. It
stalls instruction execution until all active framesin the physical register stack up to, but not
including the current frame are spilled to the backing store by the RSE. A f | ushr s instruction
must be the first instruction in an instruction group; otherwise, the results are undefined. A

f1 ushrs cannot be predicated.
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Table 4-1 lists the architectural visible state relating to the register stack. Table 4-2 summarizesthe
register stack management instructions. Call- and return-type branches, which affect the stack, are
described in “Branch Instructions” on page 4-24

Architectural Visible State Related to the Register Stack
Register Description
AR[PFS].pfm Previous Frame Marker field
AR[RSC] Register Stack Configuration application register
AR[BSP] Backing store pointer application register
AR[BSPSTORE] Backing store pointer application register for memory stores
AR[RNAT] RSE NaT collection application register

Register Stack Management Instructions

Mnemonic Operation
al |l oc Allocate register stack frame
flushrs Flush register stack to backing store

Integer Computation Instructions

The integer execution units provide a set of arithmetic, logical, shift and bit-field-manipulation
instructions. Additionally, they provide a set of instructions to accelerate operations on 32-bit data
and pointers.

Arithmetic, logical and 32-bit acceleration instructions can be executed on both I- and M-units

Arithmetic Instructions

Addition and subtractiora@id, sub) are supported with regular two input forms and special three
input forms. The three input addition form adds one to the sum of two input registers. The three
input subtraction form subtracts one from the difference of two input registers. The three input
forms share the same mnemonics as the two input forms and are specified by appending a “1” as a
third source operand.

Immediate forms of addition and subtraction use a register and a 15-bit immediate. The immediate
form is obtained simply by specifying an immediate rather than a register as the first operand. Also,
addition can be performed between a register and a 22-bit immediate; however, the source register

must be GR 0, 1, 2 or 3.

A shift left and add instructiors kil add) shifts one register operand to the left by 1 to 4 bits and
adds the result to a second register operatole 4-3summarizes the integer arithmetic
instructions.
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Table 4-3.

4.2.2

Table 4-4.

4.2.3

Integer Arithmetic Instructions
Mnemonic Operation
add Addition
add....1 Three input addition
sub Subtraction
sub..,1 Three input subtraction
shl add Shift left and add

Note that an integer multiply instruction is defined which uses the floating-point registers. See
“Integer Multiply and Add Instructions” on page 5-fof details. Integer divide is performed in
software similarly to floating-point divide.

Logical Instructions

Instructions to perform logical ANDafd), OR (r), and exclusive ORx6r ) between two
registers or between a register and an immediate are definednddre instruction performs a
logical AND of a register or an immediate with the complement of another regesibée. 4-4
summarizes the integer logical instructions.

Integer Logical Instructions

Mnemonic Operation
and Logical and
or Logical or
andcm Logical and complement
xor Logical exclusive or

32-bit Addresses and Integers

Support for 1A-64 32-bit addresses is provided in the form of add instructions that perform region
bit copying. This supports the virtual address translation model. The add 32-bit pointer instruction
(addp) adds two registers or a register and an immediate, zeroes the most significant 32-bits of the
result, and copies bits 31:30 of the second source to bits 62:61 of the resull atiep

instruction operates similarly but shifts the first source to the left by 1 to 4 bits before performing
the add, and is provided only in the two-register form.

In addition, support for 32-bit integers is provided through 32-bit compare instructions and
instructions to perform sign and zero extension. Compare instructions are desctibemhrare
Instructions and Predication” on page 4Ffe sign and zero extengk( , zxt ) instructions take an
8-bit, 16-bit, or 32-bit value in a register, and produce a properly extended 64-bit result.

Table 4-5summarizes 32-bit pointer and 32-bit integer instructions.
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4.2.4

4-6

Mnemonic Operation
addp 32-bit pointer addition
shl addp Shift left and add 32-bit pointer
sxt Sign extend
zXt Zero extend

Bit Field and Shift Instructions

Four classes of instructions are defined for shifting and operating on bit fields within a general
register: variable shifts, fixed shift-and-mask instructions, a 128-bit-input funnel shift, and special
compare operations to test an individual bit within a general register. The compare instructions for
testing asingle bit (t bi t ), or for testing the NaT bit (t nat ) are described in “Compare Instructions
and Predication” on page 4-7

The variable shift instructions shift the contents of a general register by an amount specified by
another general register. The shift right sigregd Y and shift right unsignedkir . u) instructions

shift the contents of a register to the right with the vacated bit positions filled with the sign bit or
zeroes respectively. The shift lesh( ) instruction shifts the contents of a register to the left.

The fixed shift-and-mask instructiorex( r , dep) are generalized forms of fixed shifts. The extract
instruction éxt r ) copies an arbitrary bit field from a general register to the least-significant bits of
the target register. The remaining bits of the target are written with either the sign of the bit field
(extr) or with zero éxt r. u). The length and starting position of the field are specified by two
immediates. This is essentially a shift-right-and-mask operation. A simple right shift by a fixed
amount can be specified by usitg with an immediate value for the shift amount. This is just an
assembly pseudo-op for an extract instruction where the field to be extracted extends all the way to
the left-most register bit.

The deposit instructiondép) takes a field from either the least-significant bits of a general register,
or from an immediate value of all zeroes or all ones, places it at an arbitrary position, and fills the
result to the left and right of the field with either bits from a second general redigieo( with
zeroesdep. z). The length and starting position of the field are specified by two immediates. This
is essentially a shift-left-mask-merge operation. A simple left shift by a fixed amount can be
specified by usinghl with an immediate value for the shift amount. This is just an assembly
pseudo-op fodep. z where the deposited field extends all the way to the left-most register bit.

The shift right pairghr p) instruction performs a 128-bit-input funnel shift. It extracts an arbitrary
64-bit field from a 128-bit field formed by concatenating two source general registers. The starting
position is specified by an immediate. This can be used to accelerate the adjustment of unaligned
data. A bit rotate operation can be performed by usting and specifying the same register for

both operands.

Table 4-6summarizes the bit field and shift instructions.
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Table 4-6. Bit Field and Shift Instructions

4.2.5

Table 4-7.

4.3

4.3.1

Mnemonic Operation
shr Shift right signed
shr.u Shift right unsigned
shl Shift left
extr Extract signed (shift right and mask)
extr.u Extract unsigned (shift right and mask)
dep Deposit (shift left, mask and merge)
dep. z Deposit in zeroes (shift left and mask)
shrp Shift right pair

Large Constants

A special instruction is defined for generating large constants (see Table 4-7). For constants up to
22 hitsin size, the add instruction can be used, or the nov pseudo-op (pseudo-op of add with GRO,
which always reads 0). For larger constants, the move long immediate instruction (novl ) is defined
to write a 64-bit immediate into a general register. Thisinstruction occupies two instruction slots
within the same bundle, and is the only such instruction.

Instructions to Generate Large Constants

Mnemonic

Operation

nov

Move 22-bit immediate

nov|

Move 64-bit immediate

Compare Instructions and Predication

A set of compare instructions provides the ability to test for various conditions and affect the
dynamic execution of instructions. A compare instruction tests for asingle specified condition and
generates a boolean result. These results are written to predicate registers. The predicate registers
can then be used to affect dynamic execution in two ways: as conditions for conditional branches,
or as qualifying predicates for predication.

Predication

Predication is the conditional execution of instructions. The execution of most |A-64 instructions
is gated by aqualifying predicate. If the predicate is true, the instruction executes normally; if the
predicate is false, the instruction does not modify architectural state (except for the unconditional
type of compare instructions, floating-point approximation instructions and while-loop branches).
Predicates are one-bit values and are stored in the predicate register file. A zero predicate is
interpreted as false and a one predicate is interpreted as true (predicate register PRO is hardwired to
one).

A few [A-64 instructions cannot be predicated. These instructions are: alocate stack frame
(al I oc), clear rrb (cl rrrb), flush register stack (f | ushrs), and counted branches (c! oop, ct op,
cexit).
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Compare Instructions

Predicate registers are written by the following instructions. general register compare (cnp, cnp4),
floating-point register compare (f cnp), test bit and test NaT (t bi t, t nat ), floating-point class

(f cl ass), and floating-point reciprocal approximation and reciprocal square root approximation
(frcpa, frsgrta). Most of these compare instructions (all but f r cpa and f rsqgrt a) set two
predicate registers based on the outcome of the comparison. The setting of the two target registers
is described below in “Compare Types” on page 4-8ompare instructions are summarized in
Table 4-8

Table 4-8. Compare Instructions

4.3.3

Mnemonic Operation
cnp, cnp4 GR compare
thit Test bitin a GR
t nat Test GR NaT bit
fcnp FR compare
fclass FR class
frcpa, fprcpa Floating-point reciprocal approximation
frsgrta, fprsqrta Floating-point reciprocal square root approximation

The 64-bit ¢np) and 32-bit {np4) compare instructions compare two registers, or a register and an
immediate, for one of ten relations (e.g., >, <=). The compare instructions set two predicate targets
according to the result. Thep4 instruction compares the least-significant 32-bits of both sources
(the most significant 32-bits are ignored).

The test bitt(bi t ) instruction sets two predicate registers according to the state of a single bit in a
general register (the position of the bit is specified by an immediate). The testidaY (

instruction sets two predicate registers according to the state of the NaT bit corresponding to a
general register.

Thef cnp instruction compares two floating-point registers and sets two predicate targets
according to one of eight relations. Tihg ass instruction sets two predicate targets according to
the classification of the number contained in the floating-point register source.

Thefrcpa andfrsqgrt a instructions set a single predicate target if their floating-point register
sources are such that a valid approximation can be produced, otherwise the predicate target is
cleared.

Compare Types

Compare instructions can have as many as five compare types: Normal, Unconditional, AND, OR,
or DeMorgan. The type defines how the instruction writes its target predicate registers based on the
outcome of the comparison and on the qualifying predicate. The description of these types is
contained infable 4-9 In the table, “qp” refers to the value of the qualifying predicate of the
compare and “result” refers to the outcome of the compare relation (one if the compare relation is
true and zero if the compare relation is false).
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Table 4-9. Compare Type Function

Operation
Compare Type Completer
First Predicate Target Second Predicate Target
Normal none if (gp) {target = result} if (qp) {target = result}
. if (qp) {target = result} if (qp) {target = Iresult}

Unconditional unc else {target = 0} else {target = 0}

and if (qp && !result) {target = 0} if (qp && !result) {target = 0}
AND

andcm if (qp && result) {target = 0} if (qp && result) {target = 0}

or if (qp && result) {target = 1} if (qp && result) {target = 1}
OR

orcm if (qp && !result) {target = 1} if (qp && !'result) {target = 1}

or.andcm if (qp && result) {target = 1} if (qp && result) {target = 0}
DeMorgan

and.orcm if (qp && !result) {target = 0} if (qp && !'result) {target = 1}

The Normal compare type simply writes the compare result to the first predicate target and the
complement of the result to the second predicate target.

The Unconditional compare type behaves the same asthe Normal type, except that if the qualifying
predicateis0, both predicate targets are written with 0. This can be thought of as an initialization of
the predicate targets, combined with a Normal compare. Note that compare instructions with the
Unconditional type modify architectural state when their qualifying predicate isfalse.

The AND, OR and DeMorgan types are termed “parallel” compare types because they allow
multiple simultaneous compares (of the same type) to target a single predicate register. This
provides the ability to compute a logical equation sugibas (r4 == 0) || (r5 == r6) ina

single cycle (assuming p5 was initialized to 0 in an earlier cycle). The DeMorgan compare type is
just a combination of an OR type to one predicate target and an AND type to the other predicate
target. Multiple OR-type compares (including the OR part of the DeMorgan type) may specify the
same predicate target in the same instruction group. Multiple AND-type compares (including the
AND part of the DeMorgan type) may also specify the same predicate target in the same instruction

group.

For all compare instructions (except forat andf cl ass), if one or both of the source registers
contains a deferred exception token (NaT or NaTVal “Gertrol Speculation” on page 4-},3

the result of the compare is different. Both predicate targets are treated the same, and are either
written to O or left unchanged. In combination with speculation, this allows predicated code to be
turned off in the presence of a deferred exceptiar.gss behaves this way as well if NaTVal is

not one of the classes being tested fiable 4-10describes the behavior.

Table 4-10. Compare Outcome with NaT Source Input

Compare Type Operation
Normal if (qp) {target = O}
Unconditional target =0
AND if (qp) {target = O}
OR (not written)
DeMorgan (not written)

Only a subset of the compare types are provided for some of the compare instrligahtmng-11
lists the compare types which are available for each of the instructions.
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Table 4-11. Instructions and Compare Types Provided

4.3.4

4.4

4-10

Instruction Relation Types Provided

cnp, cnp4 a==b,al=b, Normal, Unconditional, AND, OR, DeMorgan
a>0,a>=0,a<0,a<=0,
0>a,0>=a,0<a,0<=a

All other relations Normal, Unconditional
thit,tnat All Normal, Unconditional, AND, OR, DeMorgan
fcrp, fcl ass All Normal, Unconditional
frcpa, Not Applicable Unconditional
frsgrta,
fprcpa,
fprsgrta

Predicate Register Transfers

Instructions are provided to transfer between the predicate register file and ageneral register. These
instructions operate in a “broadside” manner whereby multiple predicate registers are transferred in
parallel, such that predicate register N is transferred to/from bit N of a general register.

The move to predicates instructioroy pr =) loads multiple predicate registers from a general
register according to a mask specified by an immediate. The mask contains one bit for each of PR 1
through PR 15 (PR 0 is hardwired to 1) and one bit for all of PR 16 through PR63 (the rotating
predicates). A predicate register is written from the corresponding bit in a general register if the
corresponding mask bit is 1; if the mask bit is 0 the predicate register is not modified.

The move to rotating predicates instructionV pr. r ot =) copies 48 bits from an immediate

value into the 48 rotating predicates (PR 16 through PR 63). The immediate value includes 28 bits,
and is sign-extended. Thus PR 16 through PR 42 can be independently set to new values, and PR
43 through PR 63 are all set to either 0 or 1.

The move from predicates instructiory =pr) transfers the entire predicate register file into a
general register target.

For all of these predicate register transfers, the predicate registers are accessed as though the
register rename base (CFM.rrb.pr) were 0. Typically, therefore, software should clear CFM.rrb.pr
before initializing rotating predicates.

Memory Access Instructions

Memory is accessed by simple load, store and semaphore instructions, which transfer data to and
from general registers or floating-point registers. The memory address is specified by the contents
of a general register.

Most load and store instructions can also specify base-address-register update. Base update adds
either an immediate value or the contents of a general register to the address register, and places the
result back in the address register. The update is done after the load or store operation, i.e., it is
performed as an address post-increment.

For highest performance, data should be aligned on natural boundaries. Within a 4K-byte

boundary, accesses misaligned with respect to their natural boundaries will always fault if UM.ac
(alignment check bit in the User Mask register) is 1. If UM.ac is 0, then an unaligned access will
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succeed if it is supported by the implementation; otherwise it will cause an Unaligned Data

Reference fault. All memory accesses that cross a 4K -byte boundary will cause an Unaligned Data

Reference fault independent of UM.ac. Additionally, all semaphore instructionswill cause an
Unaligned Data Reference fault if the accessis not aligned to its natural boundary, independent of

UM.ac.

Accesses to memory quantities larger than a byte may be donein abig-endian or little-endian
fashion. The byte ordering for all memory access instructions is determined by UM.be in the User
Mask register for |A-64 memory references. All |A-32 memory references are performed

little-endian.

Load, store and semaphore instructions are summarized in Table 4-12.

Table 4-12. Memory Access Instructions

4.4.1

Mnemonic
Floating-point Operation
General
Normal Load Pair
Id | df I df p Load
ld.s ldf.s I dfp.s Speculative load
Id. a I df.a | df p. a Advanced load
I d.sa | df . sa | df p. sa Speculative advanced load
I d.c.nc, I df.c.nc, | df p. c. nc, Check load
Id.c.clr Idf.c.clr Idfp.c.clr
Id.c.clr.acq Ordered check load
I d. acq Ordered load
| d. bi as Biased load
[ d8.fill Idf.fill Fill
st stf Store
st.rel Ordered store
st.spill stf.spill Spill
cnpxchg Compare and exchange
xchg Exchange memory and GR
f et chadd Fetch and add

Load Instructions

Load instructions transfer data from memory to ageneral register, afloating-point register or apair
of floating-point registers.

For general register loads, access sizes of 1, 2, 4, and 8 bytes are defined. For sizesless than eight
bytes, the loaded valueis zero extended to 64-hits.

For floating-point loads, five access sizes are defined: single precision (4 bytes), double precision

(8 bytes), double-extended precision (10 bytes), single precision pair (8 bytes), and double

precision pair (16 bytes). The value(s) loaded from memory are converted into floating-point
register format (see “Memory Access Instructions” on page Jeof details). The floating-point load
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4.4.2

4.4.3

4-12

intel.

pair instructions load two adjacent single or double precision numbers into two independent
floating-point registers (seethel df p[ s/ d] instruction description for restrictions on target register
specifiers). The floating-point load pair instructions cannot specify base register update.

Variants of both general and floating-point register loads are defined for supporting
compiler-directed control and data speculation. These use the general register NaT bits and the
ALAT. See“Control Speculation” on page 4-Ehd“Data Speculation” on page 4-16

Variants are also provided for controlling the memory/cache subsystem. An ordered load can be
used to force ordering in memory accesses. Beenory Access Ordering” on page 4-28

biased load provides a hint to acquire exclusive ownership of the accessed liveiBery

Hierarchy Control and Consistency” on page 4-20

Special-purpose loads are defined for restoring register values that were spilled to memory. The

I d8.fill instruction loads a general register and the corresponding NaT bit (defined for an 8-byte
access only). Thedf . fil | instruction loads a value in floating-point register format from

memory without conversion (defined for 16-byte access onlyYReggster Spill and Fill” on

page 4-15

Store Instructions

Store instructions transfer data from a general or floating-point register to memory. Store
instructions are always non-speculative. Store instructions can specify base-address-register
update, but only by an immediate value. A variant is also provided for controlling the memaory/
cache subsystem. An ordered store can be used to force ordering in memory accesses.

Both general and floating-point register stores are defined with the same access sizes as their load
counterparts. The only exception is that there are no floating-point store pair instructions.

Special purpose stores are defined for spilling register values to memosy.8Tkei | |

instruction stores a general register and the corresponding NaT bit (defined for 8-byte access only).
This allows the result of a speculative calculation to be spilled to memory and restored. The
stf.spill instruction stores a floating-point register in memory in the floating-point register
format without conversion. This allows register spill and restore code to be written to be
compatible with possible future extensions to the floating-point register formadt Thepi | |

instruction also does not fault if the register contains a NaTVal, and is defined for 16-byte access
only. SeéRegister Spill and Fill” on page 4-15

Semaphore Instructions

Semaphore instructions atomically load a general register from memory, perform an operation and
then store a result to the same memory location. Semaphore instructions are always
non-speculative. No base register update is provided.

Three types of atomic semaphore operations are defined: exclkahg €compare and exchange
(cnpxchg); and fetch and add ¢t chadd).

Thexchg target is loaded with the zero-extended contents of the memory location addressed by the
first source and then the second source is stored into the same memory location.

Thecnpxchg target is loaded with the zero-extended contents of the memory location addressed by
the first source; if the zero-extended value is equal to the contents of the Compare and Exchange
Compare Value application register (CCV), then the second source is stored into the same memory
location.
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Thef et chadd instruction specifies one general register source, one general register target, and an
immediate. Thef et chadd target isloaded with the zero-extended contents of the memory location
addressed by the source and then the immediate is added to the loaded value and the result is stored
into the same memory location.

Table 4-13. State Relating to Memory Access

Register Function
UM.be User mask byte ordering
UM.ac User mask Unaligned Data Reference fault enable
UNAT GR NaT collection
ccv Compare and Exchange Compare Value application register

4.4.4 Control Speculation

Special mechanisms are provided to alow for compiler-directed speculation. This speculation
takes two forms, control speculation and data speculation, with a separate mechanism to support
each. See also “Data Speculation” on page 4-16

44.4.1 Control Speculation Concepts

Control speculation describes the compiler optimization where an instruction or a sequence of
instructions is executed before it is known that the dynamic control flow of the program will
actually reach the point in the program where the sequence of instructions is needed. This is done
with instruction sequences that have long execution latencies. Starting the execution early allows
the compiler to overlap the execution with other work, increasing the parallelism and decreasing
overall execution time. The compiler performs this optimization when it determines that it is very
likely that the dynamic control flow of the program will eventually require this calculation. In cases
where the control flow is such that the calculation turns out not to be needed, its results are simply
discarded (the results in processor registers are simply not used).

Since the speculative instruction sequence may not be required by the program, no exceptions
encountered that would be visible to the program can be signalled until it is determined that the
program'’s control flow does require the execution of this instruction sequence. For this reason, a
mechanism is provided for recording the occurrence of an exception so that it can be signalled later
if and when it is necessary. In such a situation, the exception is said to be deferred. When an
exception is deferred by an instruction, a special token is written into the target register to indicate
the existence of a deferred exception in the program.

Deferred exception tokens are represented differently in the general and floating-point register
files. In general registers, an additional bit is defined for each register called the NaT bit (Not a
Thing). Thus general registers are 65 bits wide. A NaT bit equal to 1 indicates that the register
contains a deferred exception token, and that its 64-bit data portion contains an implementation
specific value that software cannot rely upon. In floating-point registers, a deferred exception is
indicated by a specific pseudo-zero encoding called the NaTValRspeesentation of Values in
Floating-point Registers” on page &t details).
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4442 Control Speculation and Instructions

Instructions are divided into two categories: speculative (instructions which can be used
speculatively) and non-speculative (instructions which cannot). Non-speculative instructions will
raise exceptions if they occur and are therefore unsafe to schedule before they are known to be
executed. Speculative instructions defer exceptions (they do not raise them) and are therefore safe
to schedule before they are know to be executed.

Loads to general and floating-point registers have both non-speculative (I d, | df , | df p) and
speculative (1 d. s, | df . s, | df p. s) variants. Generally, all computation instructions which write
their results to general or floating-point registers are speculative. Any instruction that modifies
state other than ageneral or floating-point register is non-speculative, since there would be no way
to represent the deferred exception (there are afew exceptions).

Deferred exception tokens propagate through the program in a dataflow manner. A speculative
instruction that reads a register containing a deferred exception token will propagate a deferred
exception token into its target. Thus a chain of instructions can be executed speculatively, and only
the result register need be checked for a deferred exception token to determine whether any
exceptions occurred.

At the point in the program when it is known that the result of a speculative calculation is needed, a
speculation check (chk. s) instruction is used. Thisinstruction tests for adeferred exception token.
If noneisfound, then the speculative cal cul ation was successful, and execution continues normally.
If a deferred exception token is found, then the speculative cal cul ation was unsuccessful and must
be re-done. In this case, the chk. s instruction branches to a new address (specified by an
immediate offset in the chk. s instruction). Software can use this mechanism to invoke code that
contains a copy of the speculative calculation (but with non-speculative loads). Sinceit is now
known that the calculation is required, any exceptions which now occur can be signalled and
handled normally.

Since computational instructions do not generally cause exceptions, the only instructions which

generate deferred exception tokens are specul ative |oads. (IEEE floating-point exceptions are

handled specially through a set of aternate status fields. See “Floating-point Status Register” on

page 5-5 Other speculative instructions propagate deferred exception tokens, but do not generate
them.

4.44.3 Control Speculation and Compares

As stated earlier, most instructions that write a register file other than the general registers or the
floating-point registers are non-speculative. The compang, €np4, f cnp), test bit { bi t ),
floating-point classf(cl ass), and floating-point approximatiofir(cpa, f r sqr t a) instructions are
special cases. These instructions read general or floating-point registers and write one or two
predicate registers.

For these instructions, if any source contains a deferred exception token, all predicate targets are
either cleared or left unchanged, depending on the compare typeatdeel-10 on page 4}9

Software can use this behavior to ensure that any dependent conditional branches are not taken and
any dependent predicated instructions are nullified."Besalication” on page 4:7

Deferred exception tokens can also be tested for with certain compare instructions. The test NaT

(t nat) instruction tests the NaT bit corresponding to the specified general register and writes two
predicate results. The floating-point classl (ass) instruction can be used to test for a NaTVal in

a floating-point register and write the result to two predicate registetsass does not clear both
predicate targets in the presence of a NaTVal input if NaTVal is one of the classes being tested for.)
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4.4.4.4

4.4.4.5

Control Speculation without Recovery

A non-speculative instruction that reads a register containing a deferred exception token will raise
a Register NaT Consumption fault. Such instructions can be thought of as performing a
non-recoverable speculation check operation. In some compilation environments, it may be true
that the only exceptions that are deferred are fatal errors. In such a program, if the result of a
speculative calculation is checked and a deferred exception token is found, execution of the
program is terminated. For such a program, the results of speculative calculations can be checked
simply by using non-speculative instructions.

Register Spill and Fill

Special store and load instructions are provided for spilling a register to memory and preserving
any deferred exception token, and for restoring a spilled register.

The spill and fill general register instructions (st 8. spi | | ,1d8. fil|) aredefinedto save/restore a
general register along with the corresponding NaT hit.

Thest 8. spi | | instruction writes a general register’s NaT bit into the User NaT Collection
application register (UNAT), and, if the NaT bit was 0, writes the register’s 64-bit data portion to
memory. If the register's NaT bit was 1, the UNAT is updated, but the memory update is
implementation specific, and must consistently follow one of three spill behaviors:

* Thest8.spi || may not update memory with the register’s 64-bit data portion, or
* Thest 8. spi || may writeazero to the specified memory location, or

* Thest 8. spi |l may write the register’s 64-bit data portion to memory, only if that
implementation returns a zero into the target register of all NaTed speculative loads, and that
implementation also guarantees that all NaT propagating instructions perform all
computations as specified by the instruction pages.

Bits 8:3 of the memory address determine which bit in the UNAT register is written.

Thel d8.fill instruction loads a general register from memory taking the corresponding NaT bit
from the bit in the UNAT register addressed by bits 8:3 of the memory address. The UNAT register
must be saved and restored by software. It is the responsibility of software to ensure that the
contents of the UNAT register are correct while execwtirgy spi I | andl d8.fill instructions.

The floating-point spill and fill instructions(f. spil | ,1df.fill) are defined to save/restore a
floating-point register (saved as 16 bytes) without surfacing an exception if the FR contains a
NaTVal (these instructions do not affect the UNAT register).

The general and floating-point spill/fill instructions allow spilling/filling of registers that are targets

of a speculative instruction and may therefore contain a deferred exception token. Note also that
transfers between the general and floating-point register files cause a conversion between the two
deferred exception token formats.

Table 4-14lists the state relating to control speculatitaible 4-15summarizes the instructions
related to control speculation.
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Table 4-14. State Related to Control Speculation

Register Description
NaT bits 65th bit associated with each GR indicating a deferred exception
NaTVal Pseudo-Zero encoding for FR indicating a deferred exception
UNAT User NaT collection application register
Table 4-15. Instructions Related to Control Speculation

Mnemonic Operation
Id.s, Idf.s, Idfp.s GR and FR speculative loads
1d8.fill, Idf.fill Fill GR with NaT collection, fill FR
st8.spill, stf.spill Spill GR with NaT collection, spill FR
chk.s Test GR or FR for deferred exception token
t nat Test GR NaT bit and set predicate

4.4.5

4451

4-16

Data Speculation

Just as control speculative |oads and checks allow the compiler to schedule instructions across
control dependences, data specul ative |oads and checks allow the compiler to schedule instructions
across some types of ambiguous data dependences. This section detail s the usage model and
semantics of data speculation and related instructions.

Data Speculation Concepts

An ambiguous memory dependence is said to exist between a store (or any operation that may
update memory state) and aload when it cannot be statically determined whether the load and store
might access overlapping regions of memory. For convenience, a store that cannot be statically
disambiguated relative to a particular load is said to be ambiguous relative to that load. In such
cases, the compiler cannot change the order in which the load and store instructions were originally
specified inthe program. To overcome this scheduling limitation, aspecia kind of load instruction
called an advanced load can be scheduled to execute earlier than one or more stores that are
ambiguous relative to that load.

Aswith control speculation, the compiler can al so specul ate operations that are dependent upon the
advanced load and later insert a check instruction that will determine whether the speculation was
successful or not. For data speculation, the check can be placed anywhere the original non-data
speculative load could have been schedul ed.

Thus, a data-specul ative sequence of instructions consists of an advanced load, zero or more
instructions dependent on the value of that load, and a check instruction. This means that any
sequence of stores followed by aload can be transformed into an advanced load followed by a
sequence of stores followed by a check. The decision to perform such atransformation is highly
dependent upon the likelihood and cost of recovering from an unsuccessful data specul ation.
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4.45.2 Data Speculation and Instructions

Advanced loads are availablein integer (I d. a), floating-point (I df . a), and floating-point pair

(I df p. a) forms. When an advanced load is executed, it allocates an entry in a structure called the
Advanced Load Address Table (ALAT). Later, when a corresponding check instruction is executed,
the presence of an entry indicates that the data speculation succeeded; otherwise, the speculation
failed and one of two kinds of compiler-generated recovery is performed:

1. Thecheck load instruction (I d. ¢, | df . c, or | df p. ¢) isused for recovery when the only
instruction scheduled before a store that is ambiguous relative to the advanced load is the
advanced load itself. The check load searches the ALAT for a matching entry. If found, the
speculation was successful; if a matching entry was not found, the speculation was
unsuccessful and the check load rel oads the correct value from memory. Figure 4-2 shows this

transformation.

Figure 4-2. Data Speculation Recovery Using Id.c

Before Data Speculation

After Data Speculation

/! other instructions
st 8 [rd4] =r12

1 d8 ré =[r8];;
add r5 =16, r7;;
st 8 [r18] =715

Id8.a r6 =1[r8];; [/ advanced |oad
/] other instructions

st8 [rd4] =r12

Id8.c.clr r6 = [r8] // check |oad
add r5 =r6, r7;;

st8 [r18] =r5

2. Theadvanced load check (chk. a) is used when an advanced load and several instructions that
depend on the loaded value are scheduled before a store that is ambiguous relative to the

advanced load. The advanced load check works like the speculation check (chk. s) in that, if
the specul ation was successful, execution continues inline and no recovery is necessary; if
speculation was unsuccessful, the chk. a branches to compiler-generated recovery code. The
recovery code contains instructions that will re-execute all the work that was dependent on the
failed data speculative load up to the point of the check instruction. Aswith the check load, the
success of a data speculation using an advanced load check is determined by searching the
ALAT for amatching entry. This transformation is shown in Figure 4-3.

Figure 4-3. Data Speculation Recovery Using chk.a

Before Data Speculation

After Data Speculation

/! other instructions
st8 [rd4] =r12

| d8 ré =[r8];;
add r5 =16, r7;;
st8 [r18] =75

Id8.a r6 =[r8];;

/1 other instructions
add r5 =r6, r7;;
/] other instructions
st8 [rd4] =r12
chk.a.clr r6, recover

back:
st8 [r18] =r5

/'l somewhere el se in program
recover:

| d8 ré =1[r8];;
add r5 =r6, r7
br back

Recovery code may use either anormal or advanced load to obtain the correct value for the failed
advanced load. An advanced load is used only when it is advantageous to have an ALAT entry
reallocated after afailed speculation. The last instruction in the recovery code should branch to the

instruction following the chk. a.
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Detailed Functionality of the ALAT and Related Instructions

The ALAT isthe structure that holds the state necessary for advanced |oads and checks to operate
correctly. The ALAT is searched in two different ways: by physical addresses and by ALAT
register tags. An ALAT register tag is a unique number derived from the physical target register
number and type in conjunction with other implementation-specific state. |mplementation-specific
state might include register stack wrap-around information to distinguish one instance of a physical
register that may have been spilled by the RSE from the current instance of that register, thus
avoiding the need to purge the ALAT on all register stack wrap-arounds.

IA-32 instruction set execution leaves the contents of the ALAT undefined. Software can not rely
on ALAT values being preserved across an instruction set transition. On entry to |A-32 instruction
set, existing entriesin the ALAT are ignored.

4.45.3.1 Allocating and Checking ALAT Entries

Advanced loads perform the following actions:

1. The ALAT register tag for the advanced load is computed. (For | df p. a, atag is computed
only for thefirst target register.)

2. If an entry with amatching ALAT register tag exists, it is removed.

3. A new entry isalocated in the ALAT which contains the new ALAT register tag, the load
access size, and atag derived from the physical memory address.

4. Thevalue at the address specified in the advanced |oad isloaded into the target register and, if
specified, the base register is updated and an implicit prefetch is performed.

Since the success of a check is determined by finding amatching register tag in the ALAT, both the
chk. a and the target register of al d. ¢ must specify the same register as their corresponding
advanced load. Additionally, the check load must use the same address and operand size asthe
corresponding advanced load; otherwise, the value written into the target register by the check load
is undefined.

An advanced load check performs the following actions:
1. Itlooksfor amatching ALAT entry and if found, falls through to the next instruction.
2. If no matching entry isfound, the chk. a branches to the specified address.

An implementation may choose to implement afailing advanced load check directly as abranch or
as afault where the fault-handler emulates the branch. Although the expected mode of operationis
for an implementation to detect matching entriesin the ALAT during checks, an implementation
may fail acheck instruction even when an entry with amatching ALAT register tag exists. This
will be arare occurrence but software must not assume that the ALAT does hot contain the entry.

A check load checks for amatching entry in the ALAT. If no matching entry isfound, it reloads the
value from memory and any faults that occur during the memory reference are raised. When a
matching entry is found, the target register is left unchanged

If the check load was an ordered check load (1 d. c. cl r. acq), then it is performed with the
semantics of an ordered load (I d. acq). ALAT register tag lookups by advanced load checks and
check loads are subject to memory ordering constraints as outlined in “Memory Access Ordering”
on page 4-23
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4.4.5.5

In addition to the flexibility described above, the size, organization, matching algorithm, and
replacement algorithm of the ALAT are implementation dependent. Thus, the success or failure of
specific advanced loads and checksin a program may change: when the program isrun on different
processor implementations, within the execution of a single program on the same implementation,
or between different runs on the same implementation.

4.4.5.3.2 Invalidating ALAT Entries

In addition to entries removed by advanced loads, ALAT entry invalidations can occur implicitly
by events that alter memory state or explicitly by any of the following instructions: | d. c. cl r,

I d.c.clr.acq,chk.a.clr,inval a,inval a. e. Eventsthat may implicitly invalidate ALAT
entries include those that change memory state or memory translation state such as:

1. The execution of stores or semaphores on other processors in the coherence domain.
2. Theexecution of store or semaphore instructionsissued on the local processor.

When one of these events occurs, hardware checks each memory region represented by an entry in
the ALAT to seeif it overlaps with the locations affected by the invalidation event. ALAT entries
whose memory regions overlap with the invalidation event locations are removed.

Combining Control and Data Speculation

Control speculation and data speculation are not mutually exclusive; a given load may be both
control and data speculative. Both control speculative (I d. sa, | df . sa, | df p. sa) and non-control
speculative (1 d. a, | df . a, | df p. a) variants of advanced |loads are defined for general and
floating-point registers. If a speculative advanced load generates a deferred exception token then:

1. Any existing ALAT entry with the same ALAT register tag isinvalidated.
2. No new ALAT entry is allocated.

3. If thetarget of the load was a general-purpose register, its NaT bit is set.
4

. If the target of the load was a floating-point register, then NaT Val iswritten to the target
register.

If a speculative advanced |oad does not generate a deferred exception, then its behavior is the same
as the corresponding non-control speculative advanced load.

Since there can be no matching entry in the ALAT after a deferred fault, a single advanced |oad
check or check load is sufficient to check both for data speculation failures and to detect deferred
exceptions.

Instruction Completers for ALAT Management

To help the compiler manage the allocation and deallocation of ALAT entries, two variants of
advanced load checks and check loads are provided: variantswith clear (chk.a.clr,ld.c.clr,
Id.c.clr.acq,ldf.c.clr,ldfp.c.clr)andvariantswith no clear (chk. a. nc, | d. c. nc,

| df . c. nc, | df p. c. nc).

The clear variants are used when the compiler knows that the ALAT entry will not be used again
and wants the entry explicitly removed. This allows software to indicate when entries are
unneeded, making it less likely that a useful entry will be unnecessarily forced out because all
entries are currently allocated.
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For the clear variants of check load, any ALAT entry with the same ALAT register tag is
invalidated independently of whether the address or size fields of the check load and the
corresponding advanced |oad match. For chk. a. cl r, the entry is guaranteed to be invalidated only
when the instruction falls through (the recovery codeis not executed). Thus, afailingchk. a. cl r
may or may not clear any matching ALAT entries. In such cases, the recovery code must explicitly
invalidate the entry in question if program correctness depends on the entry being absent after a
failedchk. a. cl r.

Non-clear variants of both kinds of data speculation checks act as a hint to the processor that an

existing entry should be maintained in the ALAT or that a new entry should be allocated when a

matching ALAT entry doesn't exist. Such variants can be used within loops to check advanced
loads which were presumed loop-invariant and moved out of the loop by the compiler. This
behavior ensures that if the check load fails on one iteration, then the check load will not
necessarily fail on all subsequent iterations. Whenever a new entry is inserted into the ALAT or
when the contents of an entry are updated, the information written into the ALAT only uses
information from the check load and does not use any residual information from a prior entry. The
non-clear variant afhk. a, chk. a. nc, does not allocate entries and the' ‘completer acts as a

hint to the processor that the entry should not be cleared.

Table 4-16andTable 4-17summarize state and instructions relating to data speculation.

Table 4-16. State Relating to Data Speculation

Structure Function
ALAT Advanced load address table
Table 4-17. Instructions Relating to Data Speculation
Mnemonic Operation
Id.a, Idf.a, Idfp.a GR and FR advanced load
st, st.rel, st8.spill, stf, stf.spill GR and FR store
cnmpxchg, fetchadd, xchg GR semaphore
Id.c.clr, Id.c.clr.acq, Idf.c.clr, GR and FR check load, clear on ALAT hit
Idfp.c.clr
Id.c.nc, |df.c.nc, Idfp.c.nc GR and FR check load, re-allocate on ALAT miss
Id.sa, |df.sa, Idfp.sa GR and FR speculative advanced load
chk.a.clr, chk.a.nc GR and FR advanced load check
inval a Invalidate all ALAT entries
inval a. e Invalidate individual ALAT entry for GR or FR

4.4.6 Memory Hierarchy Control and Consistency

4.46.1 Hierarchy Control and Hints

IA-64 memory access instructions are defined to specify whether the data being accessed possesses
temporal locality. In addition, memory access instructions can specify which levels of the memory
hierarchy are affected by the access. This leads to an architectural view of the memory hierarchy
depicted irFigure 4-4composed of zero or more levels of cache between the register files and
memory where each level may consist of two parallel structures: a temporal structure and a
non-temporal structure. Note that this view applies to data accesses and not instruction accesses.
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Figure 4-4.  Memory Hierarchy
Level 1 Level 2 Level N
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| \ | \ | \
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\ Non- \ \ Non- \ \ Non- \
| | temporal | | | | temporal | | | | temporal | |
| Structure | | Structure | | Structure |
| L _ |
| |
Cache

The temporal structures cache memory accessed with temporal locality; the non-temporal
structures cache memory accessed without temporal locality. Both structures assume that memory
accesses possess spatial locality. The existence of separate temporal and non-temporal structures,
aswell asthe number of levels of cache, isimplementation dependent.

Three mechanisms are defined for allocation control: locality hints; explicit prefetch; and implicit
prefetch. Locality hints are specified by load, store, and explicit prefetch (I f et ch) instructions. A
locality hint specifies ahierarchy level (e.g., 1, 2, al). An access that is temporal with respect to a
given hierarchy level istreated as temporal with respect to all lower (higher numbered) levels. An
access that is non-temporal with respect to agiven hierarchy level istreated as temporal with
respect to al lower levels. Finding a cache line closer in the hierarchy than specified in the hint
does not demote the line. This enables the precise management of linesusing | f et ch and then
subsequent uses by . nt a loads and stores to retain that level in the hierarchy. For example,
specifying the . nt 2 hint by a prefetch indicates that the data should be cached at level 3.
Subsequent loads and stores can specify . nt a and have the dataremain at level 3.

Locality hints do not affect the functional behavior of the program and may be ignored by the
implementation. The locality hints available to loads, stores, and explicit prefetch instructions are
givenin Table 4-18. Instruction accesses are considered to possess both temporal and spatial
locality with respect to level 1.

Table 4-18. Locality Hints Specified by Each Instruction Class

Instruction Type
Mnemonic Locality Hint
Ifetch,
Load Store Ifetch.fault
none Temporal, level 1 X X X
ntl Non-temporal, level 1 X X
nt 2 Non-temporal, level 2 X
nta Non-temporal, all levels X X X
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Each locality hintimpliesaparticular allocation path in the memory hierarchy. The allocation paths
corresponding to the locality hints are depicted in Figure 4-5. The alocation path specifies the
structures in which the line containing the data being referenced would best be allocated. If theline
isaready at the same or higher level in the hierarchy no movement occurs. Hinting that a datum
should be cached in atemporal structure indicatesthat it islikely to be read in the near future.

Figure 4-5.  Allocation Paths Supported in the Memory Hierarchy
Level 1 Level 2 Level 3
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Explicit prefetch is defined in the form of the line prefetch instruction (I f et ch, | fet ch. faul t).
The Ifetch instructions moves the line containing the addressed byte to alocation in the memory
hierarchy specified by the locality hint. If the line is already at the same or higher level in the
hierarchy, no movement occurs. Both immediate and register post-increment are defined for
Ifetchand! fetch. faul t. Thel f et ch instruction does not cause any exceptions, does not
affect program behavior, and may be ignored by the implementation. Thel f et ch. f aul t
instruction affects the memory hierarchy in exactly the same way as| f et ch but takes exceptions
asif it were a 1-byte load instruction.

Implicit prefetch is based on the address post-increment of loads, stores, | f et ch and

| f et ch. faul t. The line containing the post-incremented address is moved in the memory
hierarchy based on the locality hint of the originating load, store, | fet ch or | f et ch. faul t. If the
lineis already at the same or higher level in the hierarchy then no movement occurs. Implicit
prefetch does not cause any exceptions, does not affect program behavior, and may be ignored by
the implementation.

Another form of hint that can be provided on loadsisthel d. bi as load type. Thisisahint to the
implementation to acquire exclusive ownership of the line containing the addressed data. The bias
hint does not affect program functionality and may be ignored by the implementation.

Thef ¢ instruction invalidates the cache linein all levels of the memory hierarchy above memory.
If the cache line is not consistent with memory, then it is copied into memory before invalidation.

Table 4-19 summarizes the memory hierarchy control instructions and hint mechanisms.
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Table 4-19. Memory Hierarchy Control Instructions and Hint Mechanisms

4.4.6.2

4.4.7

Mnemonic Operation
. nt 1 and .nt a completer on loads Load usage hints
. Nt a completer on stores Store usage hints
prefetch line at post-increment address on loads and stores Prefetch hint
| fetch, | fetch.fault with.nt1,.nt2, and. nt a hints Prefetch line
fc Flush cache

Memory Consistency

| A-64 instruction accesses made by a processor are not coherent with respect to instruction and/or

data accesses made by any other processor, nor are instruction accesses made by a processor

coherent with respect to data accesses made by that same processor. Therefore, hardwareis not

required to keep a processor’s instruction caches consistent with respect to any processor’s data
caches, including that processor’s own data caches; nor is hardware required to keep a processor’s
instruction caches consistent with respect to any other processor’s instruction caches. Data
accesses from different processors in the same coherence domain are coherent with respect to each
other; this consistency is provided by the hardware. Data accesses from the same processor are
subject to data dependency rules; ‘®¢emory Access Orderingbelow.

The mechanism(s) by which coherence is maintained is implementation dependent. Separate or
unified structures for caching data and instructions are not architecturally visible. Within this
context there are two categories of data memory hierarchy control: allocation and flush. Allocation
refers to movement towards the processor in the hierarchy (lower numbered levels) and flush refers
to movement away from the processor in the hierarchy (higher numbered levels). Allocation and
flush occur in line-sized units; the minimum architecturally visible line size is 32-bytes (aligned on

a 32-byte boundary). The line size in an implementation may be smaller in which case the
implementation will need to move multiple lines for each allocation and flush event. An
implementation may allocate and flush in units larger than 32-bytes.

In order to guarantee that a write from a given processor becomes visible to the instruction stream
of that same, and other, processors, the affected line(s) must be flushed to memory. Software may
use thé c instruction for this purpose. Memory updates by DMA devices are coherent with respect

to instruction and data accesses of processors. The consistency between instruction and data caches
of processors with respect to memory updates by DMA devices is provided by the hardware. In

case a program modifies its own instructions,sthec. i andsrl z.i instructions are used to

ensure that prior coherency actions are observed by a given point in the program. Refer to the
descriptionsync. i onpage 7-177or an example of self-modifying code.

Memory Access Ordering

Memory data access ordering must satisfy read-after-write (RAW), write-after-write (WAW), and
write-after-read (WAR) data dependencies to the same memory location. In addition, memory

writes and flushes must observe control dependencies. Except for these restrictions, reads, writes,
and flushes may occur in an order different from the specified program order. Note that no ordering
exists between instruction accesses and data accesses or between any two instruction accesses. The
mechanisms described below are defined to enforce a particular memory access order. In the
following discussion, the terms “previous” and “subsequent” are used to refer to the program
specified order. The term “visible” is used to refer to all architecturally visible effects of

performing a memory access (at a minimum this involves reading or writing memory).
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Memory accesses follow one of four memory ordering semantics. unordered, release, acquire or
fence. Unordered data accesses may become visible in any order. Release data accesses guarantee
that all previous data accesses are made visible prior to being made visible themselves. Acquire
data accesses guarantee that they are made visible prior to all subsequent data accesses. Fence
operations combine the release and acquire semantics into a bi-directional fence, i.e., they
guarantee that all previous data accesses are made visible prior to any subsequent data accesses
being made visible.

Explicit memory ordering takes the form of a set of instructions. ordered load and ordered check
load (I d. acq, | d. c. cl r. acq), ordered store (st . r el ), semaphores (cnpxchg, xchg, f et chadd),
and memory fence (nf). Thel d. acq and | d. c. cl r. acq instructions follow acquire semantics.
Thest . rel followsrelease semantics. Thenf instruction is afence operation. The xchg,

f et chadd. acq, and cnpxchg. acq instructions have acquire semantics. The cnpxchg. rel , and

f et chadd. r el instructions have release semantics. The semaphoreinstructions also have implicit
ordering. If thereisawrite, it will always follow the read. In addition, the read and write will be
performed atomically with no intervening accesses to the same memory region.

Table 4-20 illustrates the ordering interactions between memory accesses with different ordering
semantics. “O” indicates that the first and second reference are performed in order with respect to
each other. A “-" indicates that no ordering is implied other than data dependencies (and control
dependencies for writes and flushes).

Table 4-20. Memory Ordering Rules

Second Reference
First Reference
Fence Acquire Release Unordered
fence (0] (0] (0] (0]
acquire (0] (0] (0] (0]
release O - (0] -
unordered O - (@] -

Table 4-21summarizes memory ordering instructions related to cacheable memory.

Table 4-21. Memory Ordering Instructions

Mnemonic Operation
Id.acq, Id.c.clr.acq Ordered load and ordered check load
st.rel Ordered store
xchg Exchange memory and general register
cnpxchg. acq, cnpxchg. rel Conditional exchange of memory and general register
f et chadd. acq, f et chadd. r el Add immediate to memory
nf Memory ordering fence
4.5 Branch Instructions

Branch instructions effect a transfer of control flow to a new address. Branch targets are
bundle-aligned, which means control is always passed to the first instruction slot of the target
bundle (slot 0). Branch instructions are not required to be the last instruction in an instruction
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group. Infact, an instruction group can contain arbitrarily many branches (provided that the normal
RAW and WAW dependency requirements are met). If abranch istaken, only instructions up to the
taken branch will be executed. After ataken branch, the next instruction executed will be at the
target of the branch.

There are two categories of branches: |P-relative branches, and indirect branches. |P-relative
branches specify their target with a signed 21-bit displacement, which is added to the IP of the
bundle containing the branch to give the address of the target bundle. The displacement allows a
branch reach of +16MBytes and is bundle-aligned. Indirect branches use the branch registers to
specify the target address.

There are several branch types, as shown in Table 4-22. The conditional branch br isabranch

which istaken if the specified predicate is 1, and not-taken otherwise. The conditional call branch

br. cal | doesthe samething, and in addition, writes alink address to a specified branch register

and adjusts the general register stack (see “Register Stack” on page 4r1The conditional return

br.ret does the same thing as an indirect conditional branch, plus it adjusts the general register
stack. Unconditional branches, calls and returns are executed by specifying PR 0 (which is always
1) as the predicate for the branch instruction.

Table 4-22. Branch Types

Mnemonic Function Branch Condition Target Address
br. condor br Conditional branch Qualifying predicate IP-rel or Indirect
br.call Conditional procedure call Qualifying predicate IP-rel or Indirect
br.ret Conditional procedure return Qualifying predicate Indirect
br.ia Invoke the IA-32 instruction set | Unconditional Indirect
br. cl oop Counted loop branch Loop count IP-rel
br. ctop, Modulo-scheduled counted Loop count and Epilog count IP-rel
br.cexit loop
br. wt op, Modulo-scheduled while loop Qualifying predicate and Epilog IP-rel
br. wexi t count

The counted loop type (CLOOP) uses the Loop Count (LC) application register. If LC is non-zero
then it is decremented and the branch is taken. If LC is zero, the branch falls through. The
modulo-scheduled loop type branches (CTOP, CEXIT, WTOP, WEXIT) are described in
“Modulo-Scheduled Loop Support” on page 4-Zée loop type branches (CLOOP, CTOP,

CEXIT, WTOP, WEXIT) are allowed only in slot 2 of a bundle. A loop type branch executed in
slot O or 1 will cause an lllegal Operation fault.

Instructions are provided to move data between branch registers and general registets (
mov br =). Table 4-23summarizes state and instructions relating to branching.

Table 4-23. State Relating to Branching

Register Function
BRs Branch registers
PRs Predicate registers
CFM Current Frame Marker
PFS Previous Function State application register
LC Loop Count application register
EC Epilog Count application register
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Table 4-24. Instructions Relating to Branching

45.1

4-26

Mnemonic Operation
br Branch
mov =br Move from BR to GR
nmov br= Move from GR to BR

Modulo-Scheduled Loop Support

Support for software-pipelined loops is provided through rotating registers and loop branch types.

Software pipelining of aloop is analogous to hardware pipelining of afunctional unit. The loop

body is partitioned into multiple “stages” with zero or more instructions in each stage.
Modulo-scheduled loops have 3 phases: prolog, kernel, and epilog. During the prolog phase, new
loop iterations are started each time around (filling the software pipeline). During the kernel phase,
the pipeline is full. A new loop iteration is started, and another is finished each time around. During
the epilog phase, no new iterations are started, but previous iterations are completed (draining the
software pipeline).

A predicate is assigned to each stage to control the activation of the instructions in that stage (this
predicate is called the “stage predicate”). To support the pipelining effect of stage predicates and
registers in a software-pipelined loop, a fixed sized area of the predicate and floating-point register
files (PR16-PR63 and FR32-FR127), and a programmable sized area of the general register file,
are defined to “rotate.” The size of the rotating area in the general register file is determined by an
immediate in thal | oc instruction. This immediate must be either zero or a multiple of 8. The
general register rotating area is defined to start at GR32 and overlay the local and output areas,
depending on their relative sizes. The stage predicates are allocated in the rotating area of the
predicate register file. For counted loops, PR16 is architecturally defined to be the first stage
predicate with subsequent stage predicates extending to higher predicate register numbers. For
while loops, the first stage predicate may be any rotating predicate with subsequent stage
predicates extending to higher predicate register numbers. Software is required to initialize the
stage (rotating) predicates prior to entering the loop. An alloc instruction may not change the size
of the rotating portion of the register stack frame unless all rotating register bases (rrb’s) in the
CFM are zero. All rrb’s can be set to zero with¢her r b instruction. Thel rrrb. pr form can

be used to clear just the rrb for the predicate registersIThe b instruction must be the last
instruction in an instruction group.

Rotation by one register position occurs when a software-pipelined loop type branch is executed.
Registers are rotated towards larger register numbers in a wrap-around fashion. For example, the
value in register X will be located in register X+1 after one rotation. If X is the highest addressed
rotating register its value will wrap to the lowest addressed rotating register. Rotation is
implemented by renaming register numbers based upon the value of a rotating register base (rrb)
contained in CFM. A rrb is defined for each of the three rotating register files: CFM.rrb.gr for the
general registers; CFM.rrb.fr for the floating-point registers; CFM.rrb.pr for the predicate registers.
General registers only rotate when the size of the rotating region is not equal to zero. Floating-point
and predicate registers always rotate. When rotation occurs, two or all three rrb’s are decremented
in unison. Each rrb is decremented modulo the size of their respective rotating regions (e.g., 96 for
rrb.fr). The operation of the rotating register rename mechanism is not otherwise visible to
software. The instructions that modify the rrb’s are listetaiple 4-25
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Table 4-25. Instructions that Modify RRBs

Mnemonic Operation
clrrrb Clears all rrb's
clrrrb. pr Clears rrb.pr
br. call Clears all rrb's
br.ret Restores CFM.rrb’s from PFM.rrb’s
br.ctop, br.cexit, br.wop, and Decrements all rrb’s
br. wexi t

There are two categories of software-pipelined oop branch types: counted and while. Both

categories have two forms: top and exit. The “top” variant is used when the loop decision is located
at the bottom of the loop body. A taken branch will continue the loop while a not-taken branch will
exit the loop. The “exit” variant is used when the loop decision is located somewhere other than the
bottom of the loop. A not-taken branch will continue the loop and a taken branch will exit the loop.
The “exit” variant is also used at intermediate points in an unrolled pipelined loop.

The branch condition of a counted loop branch is determined by the specific counted loop type
(ctop or cexit), the value of the loop count application register (LC), and the value of the epilog
count application register (EC). Note that the counted loop branches do not use a qualifying
predicate. LC is initialized to one less than the number of iterations for the counted loop and EC is
initialized to the number of stages into which the loop body has been partitioned. While LC is
greater than zero, the branch direction will continue the loop, LC will be decremented, registers
will be rotated (rrb’s are decremented), and PR 16 will be set to 1 after rotation. (For each of the
loop-type branches, PR 63 is written by the branch, and after rotation this value will be in PR 16.)

Execution of a counted loop branch with LC equal to zero signals the start of the epilog. While in
the epilog and while EC is greater than one, the branch direction will continue the loop, EC will be
decremented, registers will be rotated, and PR 16 will be set to 0 after rotation. Execution of a
counted loop branch with LC equal to zero and EC equal to one signals the end of the loop; the
branch direction will exit the loop, EC will be decremented, registers will be rotated, and PR 16
will be set to 0 after rotation. A counted loop type branch executed with both LC and EC equal to
zero will have a branch direction to exit the loop. LC, EC, and the rrb’s will not be modified (no
rotation) and PR 63 will be setto 0. LC and EC equal to zero can occur in some types of optimized,
unrolled software-pipelined loops if the target of a cexit branch is set to the next sequential bundle
and the loop trip count is not evenly divisible by the unroll amount.

The direction of a while loop branch is determined by the specific while loop type (wtop or wexit),
the value of the qualifying predicate, and the value of EC. The while loop branches do not use LC.
While the qualifying predicate is one, the branch direction will continue the loop, registers will be
rotated, and PR 16 will be set to 0 after rotation. While the qualifying predicate is zero and EC is
greater than one, the branch direction will continue the loop, EC will be decremented, registers will
be rotated, and PR 16 will be set to O after rotation. The qualifying predicate is one during the
kernel and zero during the epilog. During the prolog, the qualifying predicate may be zero or one
depending upon the scheme used to program the pipelined while loop. Execution of a while loop
branch with qualifying predicate equal to zero and EC equal to one signals the end of the loop; the
branch direction will exit the loop, EC will be decremented, registers will be rotated, and PR 16
will be set to 0 after rotation. A while loop branch executed with a zero qualifying predicate and
with EC equal to zero has a branch direction to exit the loop. EC and the rrb’s will not be modified
(no rotation) and PR 63 will be set to 0.

For while loops, the initialization of EC depends upon the scheme used to program the pipelined
while loop. Often, the first valid condition for the while loop branch is not computed until several
stages into the prolog. Therefore, software pipelines for while loops often have several speculative
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prolog stages. During these stages, the qualifying predicate can be set to zero or one depending
upon the scheme used to program the loop. If the qualifying predicate is one throughout the prolog,
EC will be decremented only during the epilog phase and isinitialized to one more than the number
of epilog stages. If the qualifying predicate is zero during the speculative stages of the prolog, EC
will be decremented during this part of the prolog, and the initialization value for EC isincreased
accordingly.

Branch Prediction Hints

Information about branch behavior can be provided to the processor to improve branch prediction.
This information can be encoded with branch hints as part of a branch instruction (referred to as
hints). Hints do not affect the functional behavior of the program and may be ighored by the
processor.

Branch instructions can provide three types of hints:

* Whether prediction strategy: This describes (for COND, CALL and RET type branches)
how the processor should predict the branch condition. (For the loop type branches, prediction
isbased on LC and EC.) The suggested strategies that can be hinted are shown in Table 4-26.

Table 4-26. Whether Prediction Hint on Branches

Completer Strategy Operation

spnt Static Not-Taken Ignore this branch, do not allocate prediction resources for this branch.

sptk Static Taken Always predict taken, do not allocate prediction resources for this
branch.

dpnt Dynamic Not-Taken | Use dynamic prediction hardware. If no dynamic history information

exists for this branch, predict not-taken.

dpt k Dynamic Taken Use dynamic prediction hardware. If no dynamic history information
exists for this branch, predict taken.

¢ Sequential prefetch: Thisindicates how much code the processor should prefetch at the
branch target (shown in Table 4-27).

Table 4-27. Sequential Prefetch Hint on Branches

4-28

Sequential .
Completer Prefetch Hint Operation
few Prefetch few lines When prefetching code at the branch target, stop prefetching after a few
(implementation-dependent number of) lines.
many Prefetch many lines | When prefetching code at the branch target, prefetch more lines (also
an implementation-dependent number).

* Predictor deallocation: This provides re-use information to allow the hardware to better
manage branch prediction resources. Normally, prediction resources keep track of the
most-recently executed branches. However, sometimes the most-recently executed branch is
not useful to remember, either because it will not be re-visited any time soon or because a hint
instruction will re-supply the information prior to re-visiting the branch. In such cases, this
hint can be used to free up the prediction resources.
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Table 4-28. Predictor Deallocation Hint

4.6

4.6.1

Completer Operation
none Don'’t deallocate
clr Deallocate branch information

Multimedia Instructions

Multimediainstructions (see Table 4-29) treat the general registers as concatenations of eight 8-hit,
four 16-hit, or two 32-bit elements. They operate on each element independently and in parallel.
The elements are always aligned on their natural boundaries within a general register. Most
multimediainstructions are defined to operate on multiple element sizes. Three classes of
multimediainstructions are defined: arithmetic, shift and data arrangement.

Parallel Arithmetic

There are three forms of parallel addition and subtraction: modulo (padd, psub), signed saturation
(padd. sss, psub. sss), and unsigned saturation (padd. uuu, padd. uus, psub. uuu, psub. uus).
The modulo forms have the result wrap around the largest or smallest representable value in the
range of the result element. In the saturating forms, results larger than the largest representable
value of the range of the result element, or smaller than the smallest representable value of the
range, are clamped to the largest or smallest value in the range of the result element respectively.
The signed saturation form treats both sources as signed and clamps the result to the limits of a
signed range. The unsigned saturation form treats one source as unsigned and clamps the result to
the limits of an unsigned range. Two variants are defined that treat the second source as either
signed (. uus) or unsigned (. uuu).

The parallel average instruction (pavg, pavg. r az) adds corresponding elements from each
source and right shifts each result by one bit. In the ssmple form of the instruction, the carry out of
the most-significant bit of each sum is written into the most significant bit of the result element. In
the round-away-from-zero form, a 1 is added to each sum before shifting. The parallel average
subtract instruction (pavgsub) performs a similar operation on the difference of the sources.

The parallel shift left and add instruction (pshl add) performs aleft shift on the elements of the
first source and then adds them to the corresponding elements from the second source. Signed
saturation is performed on both the shift and the add operations. The paralel shift right and add
instruction (pshr add) is similar to pshl add. Both of these instructions are defined for 2-byte
elements only.

The parallel compare instruction (pcnp) compares the corresponding elements of both sources and
writes al ones (if true) or all zeroes (if false) into the corresponding elements of the target
according to one of two relations (== or >).

The parallel multiply right instruction (pnpy. r) multiplies the corresponding two even-numbered
signed 2-byte elements of both sources and writes the results into two 4-byte elementsin the target.
The pnpy. | instruction performs asimilar operation on odd-numbered 2-byte elements. The
parallel multiply and shift right instruction (pnpyshr, pnpyshr . u) multiplies the corresponding
2-byte elements of both sources producing four 4-byte results. The 4-byte results are shifted right
by 0, 7, 15, or 16 bits as specified by the instruction. The least-significant 2 bytes of the 4-byte
shifted results are then stored in the target register.
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The parallel sum of absolute difference instruction (psad) accumulates the absolute difference of
corresponding 1-byte elements and writes the result in the target.

The parallel minimum (pmi n. u, pri n) and the parallel maximum (pmax. u, pnax) instructions
deliver the minimum or maximum, respectively, of the corresponding 1-byte or 2-byte elementsin
thetarget. The 1-byte elements are treated as unsigned val ues and the 2-byte elements are treated as
signed values.

Table 4-29. Parallel Arithmetic Instructions

4.6.2

4-30

Mnemonic Operation 1-byte | 2-byte | 4-byte
padd Parallel modulo addition X X X
padd. sss Parallel addition with signed saturation X X
padd. uuu, Parallel addition with unsigned saturation X X
padd. uus
psub Parallel modulo subtraction X X X
psub. sss Parallel subtraction with signed saturation X X
psub. uuu, Parallel subtraction with unsigned saturation X X
psub. uus
pavg Parallel arithmetic average X X
pavg.raz Parallel arithmetic average with round away from X X

zero

pavgsub Parallel average of a difference X X

pshl add Parallel shift left and add with signed saturation X

pshr add Parallel shift right and add with signed saturation X

pcnp Parallel compare X X X
prpy. | Parallel signed multiply of odd elements X
pmpy. r Parallel signed multiply of even elements X
prpyshr Parallel signed multiply and shift right X
pnmpyshr.u Parallel unsigned multiply and shift right X

psad Parallel sum of absolute difference X

pmin Parallel minimum X X

prmax Parallel maximum X X

Parallel Shifts

The paralle shift left instruction (pshl ) individually shifts each element of the first source by a
count contained in either a general register or an immediate. The parallel shift right instruction
(pshr) performs an individual arithmetic right shift of each element of one source by a count
contained in either a general register or an immediate. Thepshr . u instruction performs an
unsigned right shift. Table 4-30 summarizes the types of parallel shift instructions.
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Table 4-30. Parallel Shift Instructions

4.6.3

Mnemonic Operation 1-byte | 2-byte | 4-byte
pshl Parallel shift left X X
pshr Parallel signed shift right X X
pshr.u Parallel unsigned shift right X X

Data Arrangement

The mix right instruction (m x. r) interleaves the even-numbered elements from both sources into
the target. The mix left instruction (mi x. ') interleaves the odd-numbered elements. The unpack
low instruction (unpack. | ) interleaves the elementsin the least-significant 4 bytes of each source
into the target register. The unpack high instruction (unpack. h) interleaves elementsfrom the most
significant 4 bytes. The pack instructions (pack. sss, pack. uss) convert from 32-bit or 16-bit
elementsto 16-hit or 8-hit elements respectively. The least-significant half of larger elementsin
both sources are extracted and written into smaller elementsin the target register. Thepack. sss
instruction treats the extracted elements as signed values and performs signed saturation on them.
The pack. uss instruction performs unsigned saturation. The mux instruction (mux) copies
individual 2-byte or 1-byte elements in the source to arbitrary positionsin the target according to a
specified function. For 2-byte elements, an 8-bit immediate allows all possible permutationsto be
specified. For 1-byte elements the copy function is selected from one of five possibilities (reverse,
mix, shuffle, alternate, broadcast). Table 4-31 describes the various types of parallel data
arrangement instructions.

Table 4-31. Parallel Data Arrangement Instructions

4.7

Mnemonic Operation 1-byte | 2-byte | 4-byte

m x. | Interleave odd elements from both sources X X X

mXx.r Interleave even elements from both sources X X X

mux Arbitrary copy of individual source elements X X

pack. sss Convert from larger to smaller elements with signed X X
saturation

pack. uss Convert from larger to smaller elements with X
unsigned saturation

unpack. | Interleave least-significant elements from both X X X
sources

unpack. h Interleave most significant elements from both X X X

sources

Register File Transfers

Table 4-32 shows the instructions defined to move val ues between the general register file and the
floating-point, branch, predicate, performance monitor, processor identification, and application
register files. Several of the transfer instructions share the same mnemonic (mov). The value of the
operand identifies which register fileis accessed.
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Table 4-32. Register File Transfer Instructions

Mnemonic Operation
getf.exp, getf.sig Move FR exponent or significand to GR
getf.s, getf.d Move single/double precision memory format from FR to GR
setf.s, setf.d Move single/double precision memory format from GR to FR
setf.exp, setf.sig Move from GR to FR exponent or significand
nmov =br Move from BR to GR
mov br= Move from GR to BR
nov =pr Move from predicates to GR
mov pr=, nov pr.rot= Move from GR to predicates
mov ar= Move from GR to AR
nov =ar Move from AR to GR
sum rum Set and reset user mask
mov =pmd[ .. .] Move from performance monitor data register to GR
nmov =cpuid[...] Move from processor identification register to GR
mov =ip Move from Instruction Pointer

Memory access instructions only target or source the general and floating-point register files. It is
necessary to use the general register file as an intermediary for transfers between memory and all
other register files except the floating-point register file.

Two classes of move are defined between the general registers and the floating-point registers. The
first type moves the significand or the sign/exponent (get f . si g, set f. si g, get f. exp,

set f. exp). The second type moves entire single or double precision numbers (get f . s, setf. s,
getf. d, setf.d). Theseinstructions also perform a conversion between the deferred exception
token formats.

Instructions are provided to transfer between the branch registers and the general registers.

Instructions are defined to transfer between the predicate register file and a general register. These
instructions operate in a “broadside” manner whereby multiple predicate registers are transferred in
parallel (predicate register N is transferred to and from bit N of a general register). The move to
predicate instructiompv pr =) transfers a general register to multiple predicate registers

according to a mask specified by an immediate. The mask contains one bit for each of the static
predicate registers (PR 1 through PR 15 — PR 0 is hardwired to 1) and one bit for all of the rotating
predicates (PR 16 through PR63). A predicate register is written from the corresponding bit in a
general register if the corresponding mask bit is set. If the mask bit is clear then the predicate
register is not modified. The rotating predicates are transferred as if CFM.rrb.pr were zero. The
actual value in CFM.rrb.pr is ignored and remains unchanged. The move from predicate instruction
(mov =pr) transfers the entire predicate register file into a general register target.

Thenmov =pmd[] instruction is defined to move from a performance monitor data (PMD) register

to a general register. If the operating system has not enabled reading of performance monitor data
registers in user level then all zeroes are returnedmihthe=cpui d[ ] instruction is defined to

move from a processor identification register to a general register.

Thenov =i p instruction is provided for copying the current value of the instruction pointer (IP)
into a general register.
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4.8.1

Character Strings and Population Count

A small set of special instructions accelerate operations on character and bit-field data.

Character Strings

The compute zero index instructions (czx. | , czx. r) treat the general register source as either
eight 1-byte or four 2-byte elements and write the general register target with the index of the first
zero element found. If there are no zero elementsin the source, the target iswritten with a constant
one higher than the largest possible index (8 for the 1-byte form, 4 for the 2-byte form). The czx. |
instruction scans the source from left to right with the left-most element having an index of zero.
Theczx. r instruction scans from right to left with the right-most element having an index of zero.
Table 4-33 summarizes the compute zero index instructions.

Table 4-33. String Support Instructions

4.8.2

Mnemonic Operation 1-byte 2-byte
czx. | Locate first zero element, left to right X X
czX.r Locate first zero element, right to left X X

Population Count

The population count instruction (popcnt ) writes the number of bits which have avalue of 1inthe
source register into the target register.
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intgl.
IA-64 Floating-point Programming
Model 5

The |A-64 floating-point architecture is fully compliant with the ANSI/IEEE Standard for Binary
Floating-point Arithmetic (Std. 754-1985). Thereis full IEEE support for single, double, and
double-extended real formats. The two | EEE methods for controlling rounding precision are
supported. The first method converts results to the double-extended exponent range. The second
method converts results to the destination precision. Some |EEE extensions such as fused multiply
and add, minimum and maximum operations, and aregister file format with alarger range than the
minimum double-extended format are also included.

5.1 Data Types and Formats

Six data types are supported directly: single, double, double-extended real (IEEE real types); 64-bit
signed integer, 64-bit unsigned integer, and the 82-bit floating-point register format. A “Parallel
FP” format where a pair of IEEE single precision values occupy a floating-point register’s
significand is also supported. A seventh data type, IEEE-style quad-precision, is supported by
software routines. A future architecture extension may include additional support for the
quad-precision real type.

51.1 Real Types

The parameters for the supported IEEE real types are summarikatolerb-1

Table 5-1. IEEE Real-Type Properties

Single Double Double-Extended Quad-Precision
|IEEE Real-Type Parameters
Sign +or - +or - +or - +or -
Emax +127 +1023 +16383 +16383
Emin -126 -1022 -16382 -16382
Exponent bias +127 +1023 +16383 +16383
Precision (bits) 24 53 64 113
|IEEE Memory Formats
Total memory format width (bits) 32 64 80 128
Sign field width (bits) 1 1 1 1
Exponent field width (bits) 8 11 15 15
Significand field width (bits) 23 52 64 112
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Floating-point Register Format

Data contained in the floating-point registers can be either integer or real type. The format of data
in the floating-point registersis designed to accommodate both of these types with no loss of
information.

Real numbers reside in 82-bit floating-point registers in a three-field binary format (see
Figure 5-1). The threefields are:

* The 64-bit significand field, bgz. bgobg;  bybg. contains the number’'s significant digits. This
field is composed of an explicit integer bit (significand{63}), and 63 bits of fraction
(significand{ 62:0} ). For Parallel FP data, the significand field holds a pair of 32-bit IEEE
single real numbers.

¢ The 17-bit exponent field locates the binary point within or beyond the significant digits (i.e.,
it determines the number’s magnitude). The exponent field is biased by 65535 (OxFFFF). An
exponent field of all onesis used to encode the special values for |EEE signed infinity and
NaNs. An exponent field of al zeros and a significand field of all zerosis used to encode the
special valuesfor IEEE signed zeros. An exponent field of all zeros and anon-zero significand
field encodes the double-extended real denormals and double-extended real
pseudo-denormals.

* The 1-bit sign field indicateswhether the number is positive (sign=0) or negative (sign=1). For
Parallel FP data, thishbit is aways 0.

Figure 5-1. Floating-point Register Format

5.1.3

5-2

81 80 64 63 0

exponent significand (with explicit integer bit)

17 64

The value of afinite floating-point number, encoded with non-zero exponent field, can be
calculated using the expression:

(-1)(S9M * p(exponent - 65535) (qjgnificand( 63} .significand{ 62:0} ,)

The value of afinite floating-point number, encoded with zero exponent field, can be calculated
using the expression:

(-1)(S19M * (-16382)x (gignificand{ 63} .significand{ 62:0} 5)

Integers (64-bit signed/unsigned) and Parallel FP numbers reside in the 64-bit significand field. In
their canonical form, the exponent field is set to 0x1003E (biased 63) and the sign field is set to 0.

Representation of Values in Floating-point Registers

The floating-point register encodings are grouped into classes and subclasses and listed below in
Table 5-2 (shaded encodings are unsupported). The last two table entries contain the values of the
constant floating-point registers, FR 0 and FR 1. The constant value in FR 1 does not change for
the parallel single precision instructions or for the integer multiply accumulate instruction and
would not generally be useful.
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Table 5-2. Floating-point Register Encodings

Biased Significand
Class or Subclass Slg‘n Exponent i.bb...bb (explicit integer bit is
(1 bit) . shown)
(17-bits) (64-bits)

NaNs 0/1 Ox1FFFF | 1.000...01 through 1.111...11
Quiet NaNs 0/1 Ox1FFFF | 1.100...00 through 1.111...11
Quiet NaN Indefinite? 1 Ox1FFFF | 1.100...00
Signaling NaNs 0/1 Ox1FFFF 1.000...01 through 1.011...11

Infinity 0/1 Ox1FFFF | 1.000...00

Pseudo-NaNs 0/1 Ox1FFFF | 0.000...01 through 0.111...11

Pseudo-Infinity 0/1 Ox1FFFF 0.000...00

Normalized Numbers 0/1 0x00001 1.000...00 through 1.111...11

(Floating-point Register Format Normals) through

Ox1FFFE
Integers or Parallel FP 0 0x1003E 1.000...00 through 1.111...11
(large unsigned or negative signed integers)
Integer IndefiniteP 0 0x1003E 1.000...00
IEEE Single Real Normals 0/1 OxOFF81 1.000...00...(40)0s
through through
0x1007E 1.111...11...(40)0s
IEEE Double Real Normals 0/1 OxOFCO01 1.000...00...(12)0s
through through
0x103FE 1.111...11...(11)0s
IEEE Double-Extended Real Normals 0/1 0x0C001 1.000...00 through 1.111...11
through
0x13FFE
Normal numbers with the same value as 0/1 0x0C001 1.000...00 through 1.111...11
Double-Extended Real Pseudo-Denormals
IA-32 Stack Single Real Normals 0/1 0x0C001 1.000...00...(40)0s
(produced when the computation model is thrfgg:;E through
IA-32 Stack Double Real Normals 0/1 0x0C001 1.000...00...(11)0s
(produced when the computation model is E)h;]c_)glggE through

Unnormalized Numbers 0/1 0x00000 0.000...01 through 1.111...11

(Floating-point Register Format unnormalized 0x00001 0.000...01 through 0.111...11

numbers) through

Ox1FFFE

0x00001 0.000...00

through

0x1FFFD

1 Ox1FFFE | 0.000...00

Integers or Parallel FP 0 0x1003E 0.000...00 through 0.111...11
(positive signed/unsigned integers)
Single Real Denormals 0/1 OxOFF81 0.000...01...(40)0s

through
0.111...11...(40)0s
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Table 5-2. Floating-point Register Encodings (Cont'd)

Biased Significand
Class or Subclass Slgn Exponent i.bb...bb (explicit integer bit is
(1 bit) (17-bits) shown)
(64-bits)
Double Real Denormals 0/1 0xO0FCO01 0.000...01...(11)0s
through
0.111...11...(11)0s
Register Format Denormals 0/1 0x00001 0.000...01 through 0.111...11
Double-Extended Real Denormals 0/1 0x00000 0.000...01 through 0.111...11
Unnormal numbers with the same value as 0/1 0x0C001 0.000...01 through 0.111...11
Double-Extended Real Denormals
Double-Extended Real Pseudo-Denormals 0/1 0x00000 1.000...00 through 1.111...11
(IA-32 stack and memory format)
IA-32 Stack Single Real Denormals 0/1 0x00000 0.000...01...(40)0s
(produced when computation model is IA-32 through
IA-32 Stack Double Real Denormals 0/1 0x00000 0.000...01...(12)0s
(produced when computation model is 1A-32 through
Stack Double) 0.111...11...(11)0s
Pseudo-Zeros 0/1 0x00001 0.000...00
through
Ox1FFFD
1 Ox1FFFE | 0.000...00
NaTVal® 0 Ox1FFFE | 0.000...00
Zero 0/1 0x00000 0.000...00
FR O (positive zero) 0 0x00000 0.000...00
FR 1 (positive one) 0 OXOFFFF 1.000...00

a. Default response on a masked real invalid operation.
b. Default response on a masked integer invalid operation.
c. Created by unsuccessful speculative memory operation.

All register file encodings are allowed as inputs to arithmetic operations. The result of an
arithmetic operation is aways the most normalized register file representation of the computed
value, with the exponent range limited from Emin to Emax of the destination type, and the
significand precision limited to the number of precision bits of the destination type. Computed
values, such as zeros, infinities, and NaNs that are outside these bounds are represented by the
corresponding unique register file encoding. Double-extended real denormal results are mapped to
the register file exponent of 0x00000 (instead of 0x0C001). Unsupported encodings (Pseudo-NaNs
and Pseudo-Infinities), Pseudo-zeros and Double-extended Real Pseudo-denormals are never
produced as a result of an arithmetic operation.

Arithmetic on pseudo-zeros operates exactly as an equivalently signed zero, with one exception.
Pseudo-zero multiplied by infinity returns the correctly signed infinity instead of an Invalid
Operation Floating-point Exception fault (and QNaN). Also, pseudo-zeros are classified as
unnormalized numbers, not zeros.
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5.2 Floating-point Status Register

The Floating-point Status Register (FPSR) contains the dynamic control and status information for
floating-point operations. Thereis one main set of control and status information (FPSR.sf0), and
three alternate sets (FPSR.sf1, FPSR.sf2, FPSR.sf3). The FPSR layout is shown in Figure 5-2 and
its fields are defined in Table 5-3. Table 5-4 gives the FPSR'’s status field description and
Figure 5-3shows their layout.

Figure 5-2. Floating-point Status Register Format
63 58 57 45 44 32 31 19 18 6 5 0

rv sf3 sf2 sfl sf0 ‘ traps

o

13 13 13 13 6

Table 5-3. Floating-point Status Register Field Description

Field Bits Description

traps.vd 0 Invalid Operation Floating-point Exception fault (IEEE Trap) disabled when this bit is
set

traps.dd 1 Denormal/Unnormal Operand Floating-point Exception fault disabled when this bit is
set

traps.zd 2 Zero Divide Floating-point Exception fault (IEEE Trap) disabled when this bit is set

traps.od 3 Overflow Floating-point Exception trap (IEEE Trap) disabled when this bit is set

traps.ud 4 Underflow Floating-point Exception trap (IEEE Trap) disabled when this bit is set

traps.id 5 Inexact Floating-point Exception trap (IEEE Trap) disabled when this bit is set

sf0 18:6 Main status field

sfl 31:19 Alternate status field 1

sf2 44:32 Alternate status field 2

sf3 57:45 Alternate status field 3

rv 63:58 Reserved

Figure 5-3. Floating-point Status Field Format

12 11 10 9 8 7 6 5 4 3 2 1 O
FPSR.sfx

flags controls

i’u‘o’z’d‘v td‘ rc ’ pc ’wre‘ftz
6 7

Table 5-4. Floating-point Status Register’s Status Field Description

Field Bits Description
ftz 0 Flush-to-Zero mode
wre 1 Widest range exponent (see Table 5-6)
pc 3:2 Precision control (see Table 5-6)
rc 5:4 Rounding control (see Table 5-5)
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Table 5-4. Floating-point Status Register’s Status Field Description (Cont’d)

Note:

Field Bits Description
td 6 Traps disabled®
v 7 Invalid Operation (IEEE Flag)
d 8 Denormal/Unnormal Operand
z 9 Zero Divide (IEEE Flag)
o] 10 Overflow (IEEE Flag)
u 11 Underflow (IEEE Flag)
i 12 Inexact (IEEE Flag)

a. td is a reserved bit in the main status field, FPSR.sf0.

The Denormal/Unnormal Operand status flag is an IEEE-style sticky flag that is set if the valueis

used in an arithmetic instruction and in an arithmetic calculation; e.g. unorm*NaN doesn'’t set the d
flag. Canonical single/double/double-extended denormal/double-extended pseudo-denormal/
register format denormal encodings are a subset of the floating-point register format unnormalized
numbers.

The Floating-point Exception fault/trap occurs only if an enabled floating-point exception occurs
during the processing of the instruction. Hence, setting a flag bit of a status field to 1 in software
will not cause an interruption. The status fields flags are merely indications of the occurrence of
floating-point exceptions.

Flush-to-Zero (FTZ) mode causes results which encounter “tininess” to be truncated to the
correctly signed zero. Flush-to-Zero mode can be enabled only if Underflow is disabled. This can
be accomplished by disabling all traps (FPSRdtbeing set to 1), or by disabling it individually
(FPSR.traps.ud set to 1). If Underflow is enabled then it takes priority and Flush-to-Zero mode is
ignored. Note that the software exception handler could examine the Flush-to Zero mode bit and
choose to emulate the Flush-to-Zero operation when an enabled Underflow exception arises.

The FPSR.sfu and FPSR.xgfi bits will be set to 1 when a result is flushed to the correctly signed
zero because of Flush-to-Zero mode. If enabled, an inexact result exception is signaled.

A floating-point result is rounded based on the instructige'sompleter and the status field’s

wre, pc, andrc control fields. The result’s significand precision and exponent range are determined
as described ifable 5-6 If the result isn’t exact, FPSRxsfc specifies the rounding direction (see
Table 5-5.

Table 5-5. Floating-point Rounding Control Definitions

Nearest (or even) — Infinity (down) + Infinity (up) Zero (truncate/chop)

FPSR.sfx.rc 00 01 10 11
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Table 5-6. Floating-point Computation Model Control Definitions

Computation Model Control Fields Computation Model Selected
Instruction’s FPSRsiX's | FPSR siX's Significand Exponent
¢ Completer Dynamic Dynamic Pgrecision Rpan o Computational Style
P P pc Field wre Field 9
.S ignored 0 24 bits 8 bits IEEE real single
d ignored 0 53 bits 11 bits IEEE real double
.S ignored 1 24 bits 17 bits Register file range, single
precision
d ignored 1 53 bits 17 bits Register file range, double
precision
none 00 0 24 bits 15 bits IA-32 stack single
none 01 0 N.A. N.A. Reserved
none 10 0 53 bits 15 bits IA-32 stack double
none 11 0 64 bits 15 bits IA-32 double-extended
none 00 1 24 bits 17 bits Register file range, single
precision
none 01 1 N.A. N.A. Reserved
none 10 1 53 bits 17 bits Register file range, double
precision
none 11 1 64 bits 17 bits Register file range,
double-extended precision
not applicable?® ignored ignored 24 bits 8 bits A pair of IEEE real singles
not applicableb ignored ignored 64 bits 17 bits Register file range,
double-extended precision

a. For parallel FP instructions which have no .pc completer (e.g., foma).
b. For non-parallel FP instructions which have no .pc completer (e.g., fmerge).

Thetrap disable (sfx.td) control bit allows oneto easily set up alocal |EEE exception trap default
environment. If FPSR.sfx.td is clear (enabled), the FPSR.traps bits are used. If FPSR.sfx.td is s,
the FPSR.traps bits are treated asif they are all set (disabled). Note that FPSR.sf0.td is areserved
field which returns O when read.

5.3 Floating-point Instructions

This section describes the | A-64 floating-point instructions.

5.3.1 Memory Access Instructions

There are floating-point load and store instructions for the single, double, double-extended
floating-point real datatypes, and the Parallel FP or signed/unsigned integer datatype. The
addressing modes for floating-point load and store instructions are the same as for integer load and
store instructions, except for floating-point load pair instructions which can have an implicit
base-register post increment. The memory hint options for floating-point load and store

instructions are the same as those for integer load and store instructions. (See “Memory Hierarchy
Control and Consistency” on page 4-PTable 5-7lists the types of floating-point load and store
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instructions. The floating-point load pair instructions require the two target registersto be odd/even
or even/odd. The floating-point storeinstructions (st f s, st f d, st f e) require the value in the
floating-point register to have the same type as the store for the format conversion to be correct.

Table 5-7. Floating-point Memory Access Instructions

Operations Load to FR Load Pair to FR Store from FR
Single I df s | df ps stfs
Integer/Parallel FP | df 8 | df p8 stf8
Double | dfd | df pd stfd
Double-extended | df e stfe
Spillfill Idf.fill stf.spill

Unsuccessful speculative loads write a NaTVal into the destination register or registers (see
Section 4.4.4). Storing a NaT Val to memory will cause a Register NaT Consumption fault, except
for the spill instruction (st f . spi | I).

Saving and restoring floating-point registers is accomplished by the spill and fill instructions
(stf.spill,ldf.fill) usingal6-byte memory container. These are the only instructions that
can be used for saving and restoring the actual register contents since they do not fault on NaTVal.
They save and restore all types (single, double, double-extended, register format and integer or
Parallel FP) and will ensure compatibility with possible future architecture extensions.

Figure 5-4, Figure 5-5, Figure 5-6 and Figure 5-7 describe how single precision, double precision,

double-extended precision, and spill/fill datais translated during transfers between floating-point
registers and memory.
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Figure 5-4. Memory to Floating-point Register Data Translation —Single Precision

sign exponent ingiatger significand
FR: k 0
‘ T
Memory:
Single-precision Load — normal numbers
sign exponent iné?tger significand
FR: M‘FFF 0
Memory: 1111117 (1
Single-precision Load — infinities and NaNs
sign exponent iné?tger significand
FR: Q\o' @ 0
Memory: 00000ag 0 O 0 0
Single-precision Load — zeros
sign exponent iné(ietger significand
FR: u’:F81 @ 0
Memory: 0000009 (0
Single-precision Load — denormal numbers
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Figure 5-5. Memory to Floating-point Register Data Translation —Double Precision

) integer
sign exponent bit significand
Memory: 110000 ) U | U | R
Double-precision Load — normal numbers
. integer
sign exponent bit significand
FR: ‘ Ox1FFFF “ 0 ‘
Memory: ke occe S | A | N | N I N .
Double-precision Load — infinities and NaNs
. integer
sign exponent bit significand
FR: ‘ 0 ‘@‘ 0 ‘
wemory: (0995083 e o | [0 J[ o |[ 0 ][0 J[ o ][ o |
Double-precision Load — zeros
) integer
sign exponent bit significand
FR: ‘ OXOFCO1 ‘@‘ 0 ‘
Memory: loogocag oo || | [ [ JL [

Double-precision Load — denormal numbers
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Figure 5-6. Memory to Floating-point Register Data Translation —Double Extended,

Integer and Fill

sign exponent

integer
bitg significand

| U |

ST,

T

Memory:

Double-extended-precision Load — normal/unnormal numbers

. integer N
sign exponent bit significand
FR: I Ox1FFFF | H I |
Memory: pwi ped || [ J[ JL JL JL (L]

Double-extended-precision Load — infinities and NaNs

. integer L

sign exponent bit significand
o]l o [ |
Memory: Llovoooeq ococoed || || [ J| J[ J[ | J[ |

Double-extended-precision Load — denormal/pseudo-denormals and zeros

integer N
bit significand

| (] |

sign exponent
FR: H ‘ 0x1003E
Memory: I

Integer Load

sign exponent

integer N
bit significand

FR: ‘

Register Fill
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Figure 5-7. Floating-point Register to Memory Data Translation

sign exponent inkt)?tger significand
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Both little-endian and big-endian byte ordering is supported on floating-point loads and stores. For
both single and double memory formats, the byte ordering is identical to the 32-bit and 64-bit
integer data types (see Section 3.2.3). The byte-ordering for the spill/fill memory and
double-extended formats is shown in Figure 5-8.

Figure 5-8. Spill/Fill and Double-Extended (80-bit) Floating-point Memory Formats

© 00 N oo o b~ W N+, O

=
o

11
12
13
14
15

Memory Formats Floating-point Register Format (82-bit)
Spill/Fill (128-bit) Double-Extended (80-bit) 81 63 0
‘s‘ exp. ‘ significand
LE BE LE BE ‘ ‘ ‘
7 0 7 0 7 0 7 0
s0 olo 0ls0 0lsel’ se2/el|e0|s7|s6|s5|s4|s3|s2|sl|s0
sl 110 1|s1 1| e0 \ ¢
s2 210 2|s2 2|s7
s3 3|0 3 s3 3|6 ‘sel’ e0'|s7 |s6|s5|s4|s3|s2|sl|sO
s4 410 4|4 4185 Double-Extended (80-hit) Interpretation
s5 5 |se2 5]|s5 5|s4
s6 6|el 6 | s6 6|s3
s7 7 |e0 7 |s7 7|s2
el 8 |s7 8| el 8|sl
el 9 | s6 9isel] 9|s0
se2| 10 |s5
0 11 | s4
0 12 | s3
0 13 | s2
0 14 | s1
0 15 | sO

5.3.2

Floating-point Register to/from General Register Transfer
Instructions

Thesetf andget f instructions (see Table 5-8) transfer data between floating-point registers (FR)
and general registers (GR). These instructions will translate a general register NaT to/from a
floating-point register NaTVal. For all other operands, the .s and .d variants of theset f and get f
instructions transl ate to/from FR as per Figure 5-4, Figure 5-5 and Figure 5-7. The memory
representation is read from or written to the GR. The .exp and .si g variants of theset f and get f
instructions operate on the sign/exponent and significand portions of a floating-point register,
respectively, and their translation formats are described in Table 5-9 and Table 5-10.
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Table 5-8. Floating-point Register Transfer Instructions
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Operations GRto FR FRto GR
Single setf.s getf.s
Double setf.d getf.d
Sign and Exponent setf.exp getf.exp
Significand/Integer setf.sig getf.sig

Table 5-9. General Register (Integer) to Floating-point Register Data Translation

Class

General
Register

Floating-point Register (.sig)

Floating-point Register (.exp)

NaT

Integer j Sign

Exponent

Significand Sign

Exponent

Significand

NaT

1

ignore NaTVal

NaTVal

integers

0

000...00 jjo
through
111..11

0x1003E

integer integer{17}

integer{16:0}

0x8000000000000000

Table 5-10. Floating-point Register to General Register (Integer) Data Translation

Floating-point Register General Register (.sig) General Register (.exp)
Class
Sign | Exponent | Significand NaT Integer NaT Integer

NaTval |0 Ox1FFFE | 0.000...00 1 0x0000000000000000 Ox1FFFE

integers | 0 0x1003E 0.000...00 0 significand 0x1003E

or through

parallel 1.111.11

FP

other ignore | ignore ignore 0 significand ((sign<<17) |
exponent)

5.3.3 Arithmetic Instructions

All of the arithmetic floating-point instructions (except f cvt . xf which is always exact) have a .sf

specifier. This indicates which of the four FPSR’s status fields will both control and record the

status of the execution of the instruction ($able 5-1). The status field specifies: enabled

exceptions, rounding mode, exponent width, precision control, and which status field’s flags to

update. Se&-loating-point Status Register” on page 5-5

Table 5-11. Floating-point Instruction Status Field Specifier Definition

5-14

.sf Specifier

.s0

sl

.s2

.s3

Status field

FPSR.sf0

FPSR.sfl

FPSR.sf2

FPSR.sf3

Most arithmetic floating-point instructions can specify the precision of the result statically by using

a.pc completer, or dynamically using thee field of the FPSR status field. (séable 5-§.

Arithmetic instructions that do not havepa completer use the floating-point register file range

and precision.
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Table 5-12 lists the floating-point arithmetic instructions and Table 5-13 lists the pseudo-operation
definitions.

Table 5-12. Floating-point Arithmetic Instructions

Operation Normal FP Mnemonic(s) Parallel FP Mnemonic(s)
Floating-point multiply and add f ma. pc. sf f pma. sf
Floating-point multiply and subtract fns. pc. sf fpns. sf
Floating-point negate multiply and add f nma. pc. sf f pnma. sf
Floating-point reciprocal approximation frcpa. sf f prcpa. sf
Floating-point reciprocal square root frsgrta. sf fprsgrta. sf

approximation

Floating-point compare

fcnp. frel. fctype. sf

fpcnp. frel. sf

Floating-point minimum fmn. sf f pm n. sf
Floating-point maximum f max. sf f pmax. sf
Floating-point absolute minimum fam n. sf f pam n. sf
Floating-point absolute maximum f amax. sf f pamax. sf
Convert floating-point to signed integer fcvt. fx. sf fpcvt. fx. sf

fevt.fx.trunc. sf

fpcvt.fx. trunc. sf

Convert floating-point to unsigned integer

fcvt. fxu. sf
fcvt. fxu.trunc. sf

fpevt. fxu. sf
fpcvt. fxu.trunc. sf

Table 5-13.

Convert signed integer to floating-point fcvt. xf N A
Floating-point Pseudo-Operations
Operation Mnemonic Operation Used

Floating-point multiplication (IEEE) f npy. pc. sf f ma, using FR 0 for addend

Parallel FP multiplication f ppy. sf f prma, using FR O for
addend

Floating-point negate multiplication (IEEE) f nnpy. pc. sf f nna, using FR 0O for

Parallel FP negate multiplication f pnmpy. sf addend
f pnma, using FR 0 for
addend

Floating-point addition (IEEE) fadd. pc. sf f ma, using FR 1 for
multiplicand

Floating-point subtraction (IEEE) f sub. pc. sf f s, using FR 1 for
multiplicand

Floating-point negation (IEEE) f nma. pc. sf f nna, using FR 1 for
multiplicand and FR 0 for
addend

Floating-point absolute value f abs f mer ge. s, with sign from

Parallel FP absolute value f pabs FRO
f pner ge. s, with sign from
FRO

Floating-point negate f neg f mer ge. ns

Parallel FP negate f pneg f prrer ge. ns
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Table 5-13. Floating-point Pseudo-Operations (Cont’d)

5.3.4

Operation Mnemonic Operation Used

Floating-point negate absolute value f negabs f mer ge. ns, with sign from

Parallel FP negate absolute value f pnegabs FRO
f prrer ge. ns, with sign
from FR O

Floating-point normalization fnorm pc. sf f ma, using FR 1 for
multiplicand and FR 0 for
addend

Convert unsigned integer to floating-point fcvt. xuf. pc. sf f ma, using FR 1 for
multiplicand and FR 0 for
addend

There are no pseudo-operations for Parallel FP addition, subtraction, negation or normalization
since FR 1 does not contain a packed pair of single precision 1.0 values. A parallel FP addition can
be performed by first forming apair of 1.0 valuesin aregister (using the f pack instruction) and
then using the f pma instruction. Similarly, an integer add operation can be generated by first
forming an integer 1 in afloating-point register and then using the xma instruction.

Non-Arithmetic Instructions

Table 5-14 lists the non-arithmetic floating-point instructions. Thef cl ass instruction is used to
classify the contents of afloating-point register. The f ner ge instruction is used to merge datafrom
two floating-point registers into one floating-point register. Thef m x, f sxt , f pack, and f swap
instructions are used to manipulate the Parallel FP datain the floating-point significand. Thef and,
fandcm f or, and f xor instructions are used to perform logical operations on the floating-point
significand. Thef sel ect instruction is used for conditional selects.

The non-arithmetic floating-point instructions always use the floating-point register (82-bit)
precision since they do not have a .pc completer nor a .sf specifier.

Table 5-14. Non-Arithmetic Floating-point Instructions

5-16

Operation Mnemonic(s)
Floating-point classify fclass. fcrel. fctype
Floating-point merge sign fnerge.s
Parallel FP merge sign f pnerge. s
Floating-point merge negative sign f mer ge. ns
Parallel FP merge negative sign f pner ge. ns
Floating-point merge sign and exponent f ner ge. se
Parallel FP merge sign and exponent f pner ge. se
Floating-point mix left fmx. |
Floating-point mix right fmx.r
Floating-point mix left-right fmx.Ir
Floating-point sign-extend left fsxt.|
Floating-point sign-extend right fsxt.r
Floating-point pack f pack
Floating-point swap f swap
Floating-point swap and negate left f swap. nl
Floating-point swap and negate right f swap. nr
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Table 5-14. Non-Arithmetic Floating-point Instructions (Cont’d)

5.3.5

Operation Mnemonic(s)
Floating-point And fand
Floating-point And Complement fandcm
Floating-point Or for
Floating-point Xor f xor
Floating-point Select fsel ect

Floating-point Status Register (FPSR) Status Field
Instructions

Speculation of floating-point operations requires that the status flags be stored temporarily in one
of the alternate status fields (not FPSR.sf0). After a speculative execution chain has been
committed, af chkf instruction can be used to update the normal flags (FPSR.sf0.flags). This
operation will preserve the correctness of the |EEE flags. The f chkf instruction does this by
comparing the flags of the status field with the FPSR.sf0.flags and FPSR.traps. If the flags of the
alternate status field indicate the occurrence of an event that corresponds to an enabled
floating-point exception in FPSR.traps, or an event that is not already registered in the
FPSR.sfO.flags (i.e., the flag for that event in FPSR.sfO.flagsis clear), then the f chkf instruction
causes a Speculative Operation fault. If neither of these cases arise then the f chkf instruction does
nothing.

Thef set ¢ instruction allows bit-wise modification of a status field’s control bits. The
FPSR.sf0.controls are ANDed with a 7-bit immediate and-mask and ORed with a 7-bit immediate
or-mask to produce the control bits for the status field.fEhef instruction clears all of the status
field’s flags to zero.

Table 5-15. FPSR Status Field Instructions

5.3.6

Operation Mnemonic(s)
Floating-point check flags f chkf .sf
Floating-point clear flags fclrf.sf
Floating-point set controls fsetc. sf

Integer Multiply and Add Instructions

Integer (fixed-point) multiply is executed in the floating-point unit using the three-operand
instructions. The operands and result of these instructions are floating-point registersa The
instructions ignore the sign and exponent fields of the floating-point register, except for a NaTVal
check. The product of two 64-bit source significands is added to the third 64-bit significand (zero
extended) to produce a 128-bit result. The low and high versions of the instruction select the
appropriate low/high 64-bits of the 128-bit result, respectively, and write it into the destination
register as a canonical integer. The signed and unsigned versions of the instructions treat the input
registers as signed and unsigned 64-bit integers respectively.

Table 5-16. Integer Multiply and Add Instructions

Integer Multiply and Add Low High

Signed xma. | xma. h

Unsigned xma. | u (pseudo-op) xma. hu
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54 Additional IEEE Considerations

54.1 Definition of SNaNs, QNaNs, and Propagation of NaNs

Signaling NaNs have a zero in the most significant fractional bit of the significand. Quiet NaNs

have a one in the most significant fractional bit of the significand. This definition of signaling and

quiet NaNs easily preserves “NaNness” when converting between different precisions. When
propagating NaNs in operations that have more than one NaN operand, the result NaN is chosen
from one of the operand NaNs in the following priority based on register encoding fieldss,first
thenf 2, and lastlyf 3.

54.2 IEEE Standard Mandated Operations Deferred to Software

The following IEEE mandated operations will be implemented in software:
* String to floating-point conversion.
* Floating-point to string conversion.
* Divide (with help fromf r cpa or f pr cpa instruction).
¢ Square root (with help fromfrsqrta or f prsqrt a instruction).
¢ Remainder (with help from f r cpa or f pr cpa instruction).
* Floating-point to integer valued floating-point conversion.

¢ Correctly wrapping the exponent for single, double, and double-extended overflow and
underflow values, as recommended by the IEEE standard.

5.4.3 Additions beyond the IEEE Standard

¢ Thefused multiply andadd (f ma, fns, fnma, fpma, fpns, fpnma) operationsenable
efficient software divide, square root, and remainder algorithms.

* The extended range of the 17-bit exponent in the register file format allows simplified
implementation of many basic humeric algorithms by the careful numeric programmer.

* TheNaTVal isanatural extension of the IEEE concept of NaNs. It is used to support
speculative execution.

* Fush-to-Zero mode is an industry standard addition.

¢ The minimum and maximum instructions allow the efficient execution of the common Fortran
Intrinsic Functions: MIN(), MAX(), AMIN(), AMAX(); and C language idioms such as
a<b?ab.

¢ All mixed precision operations are allowed. The IEEE standard suggests that implementations
allow lower precision operands to produce higher precision results; thisis supported. The
| EEE standard also suggests that implementations not allow higher precision operands to
produce lower precision results; this suggestion is not followed.

* An |EEE style quad-precision real type that is supported in software.
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IA-32 Application Execution Model in
an IA-64 System Environment 6

The 1A-64 architecture enables the execution of 1A-32 application binaries unmodified on |A-32
legacy operating systems provided the required platform and firmware support existsin the system.

This chapter describes |A-32 instruction execution in an |A-64 System Environment. The |A-64
architecture supports 16-bit Real Mode, 16-bit VM 86, and 16-bit/32-hit Protected Mode |A-32
applications running on |A-64 operating system. |A-64 operating system support for these
capabilitiesis defined by the respective operating system vendors.

The main features covered in this chapter are:
* |A-32 and |A-64 instruction set transitions.
* 1A-32 integer, segment, floating-point, MM X technology, and Streaming SIMD Extension
register state mappings.
* |A-32 memory and addressing model overview.

This chapter does not cover the details of 1A-32 application programming model, |A-32
instructions and registers. Refer to the Intel Architecture Software Developer’s Manftied details
regarding | A-32 application programming model.

6.1 Instruction Set Modes

The processor can execute either |A-32 or IA-64 instructions. A bit in Processor Status Register
(PSR) specifiesthe currently executing instruction set. Three special instructions and interruptions
are defined to transition the processor between the | A-32 and the | A-64 instruction sets as shown in
Figure 6-1.

* j npe (IA-32instruction) Jump to an | A-64 target instruction, and change the instruction set to
IA-64.

* br.ia (IA-64instruction) I1A-64 branch to an |A-32 target instruction, and change the
instruction set to 1A-32.

* rfi (IA-64instruction) Return from interruption, is defined to return to either an |A-32 or
| A-64 instruction when resuming from an interruption.

* Interruptions transition the processor to the IA-64 instruction set for all interruption
conditions.

Thej npe and br . i a instructions provide alow overhead mechanism to transfer control between
the instruction sets. These primitives typically are incorporated into “thunks” or “stubs” that

implement the required call linkage and calling conventions to call dynamic or statically linked
libraries.
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Figure 6-1. IA-64 Processor Instruction Set Transition Model
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6.1.1 IA-64 Instruction Set Execution

While the processor executes from the |A-64 instruction set;

| A-64 instructions are fetched, decoded and executed by the processor.

I A-64 instructions can access the entire 1A-64 and 1A-32 application register state. This
includes 1A-32 segment descriptors, selectors, general registers, physical floating-point
registers, MM X technology registers, and Streaming SIMD Extension registers. See
Section 6.2 for adescription of the register state mapping.

Segmentation is disabled. No segmentation protection checks are applied nor are segment
bases added to compute virtual addresses, i.e. all computed addresses are virtual addresses.

254 virtual addresses can be generated and | A-64 memory management is used for all memory
and 1/O references.

6.1.2 IA-32 Instruction Set Execution

While the processor is executing the |A-32 instruction set within the 1A-64 System Environment,
the 1A-32 application architecture as defined by the Pentililn@®ocessor is used, namely:

6-2

| A-32 16/32-bit application level, MM X technology instructions and Streaming SIMD
Extension instructions are fetched, decoded, and executed by the processor. Instructions are
confined to 32/16-bit operations.

Only 1A-32 application level register state isvisible (i.e. I1A-32 general registers, MMX
technology registers and Streaming SIMD Extension registers, selectors, EFLAGS, FP

registers and FP control registers). | A-64 application and control stateis not visible, e.g.
branch, predicate, application, etc.

IA-32 Real Mode, VM86 and Protected Mode segmentation isin effect. Segment protection
checks are applied and virtual addresses generated according to 1A-32 segmentation rules.
GDT and LDT segments are defined to support | A-32 segmented applications. Segmented 16-
and 32-bit codeisfully supported.

| A-64 memory management is used to translate virtual to physical addresses for all 1A-32
instruction set memory and 1/O Port references.

Instruction and Data memory references are forced to be little-endian. Memory ordering uses
the Pentium |11 processor memory ordering model.
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6.1.3

6.1.3.1

6.1.3.2

* |A-32 operating system resources; 1A-32 paging, MTRRs, IDT, control registers, debug
registers and privileged instructions are superceded by 1A-64 defined resources. All accesses
to these resources result in an interception fault.

Instruction Set Transitions

The following section summarizes behavior for each instruction set transition. Detailed instruction
description on j npe (IA-32 instruction) and br . i a (IA-64 instruction) should be consulted for
details. Operating systems can disable instruction set transitions.

JMPE Instruction

j npe regl16/ 32; j npe di sp16/ 32 isused tojump and transfer control to the |A-64 instruction
set. There are two forms; register indirect and absolute. The absolute form computes the virtual
| A-64 target address as follows:

I P{31: 0} =displ6/32 + CSD. base
I P{63:32} =0

Theindirect form reads a 16/32-bit register location and then computes the | A-64 target address as
follows:

1 P{31:0} = [regl6/32] + CSD. base
I P{63:32} =0

IA-64 | npe targets are forced to be 16-byte aligned, and are constrained to the lower 4G-bytes of
the 64-hit virtual address space due to limited 1A-32 addressability. If there are any pending |A-32
numeric exceptions, j npe isnullified, and an 1A-32 floating-point exception fault is generated.

Branch to IA Instruction

Unconditional branches to the |A-32 instruction set use the | A-64 defined indirect branch
mechanism. | A-32 targets are specified by a 32-bit virtual address target (not an effective address).
The I|A-32 virtual addressis truncated to 32-bits. The br . i a branch hints should always be set to
predicted static taken. The processor transitions to the I1A-32 instruction set as follows:

| P{31: 0} = BR[b]{31:0}
IP{63:32} =0
EIP{31:0} = IP{31:0} - CSD base

Transitions into the | A-32 instruction set do not change the privilege level of the processor.

Software should ensure the code segment descriptor and selector are properly loaded before issuing
the branch. If the target EIP value exceeds the code segment limit or has a code segment privilege
violation, an IA-32 GPFault(0) exception is reported on the target 1A-32 instruction.

The processor does not ensure | A-64 instruction set generated writes into the |A-32 instruction

stream are observed by the processor. For details, see “Self Modifying Code” on page 6-28efore
entering the IA-32 instruction set, IA-64 software must ensure all prior register stack frames have
been flushed to memory. All registers left in the current and prior register stack frames are
modified during IA-32 instruction set execution. For details,'se®4 Register Stack Engine” on
page 6-24

IA-64 Application Developer’s Architecture Guide, Rev. 1.0 6-3



6.1.4

6.2
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IA-32 Operating Mode Transitions

Asdescribed in “IA-32 Instruction Set Execution” on page 6j2we, br.i a, andrfi and

interruptions can transition the processor between the two instruction set modes. Transitions are
allowed between all major 1A-32 modes and IA-Bdpe and interruptions will transition the
processor from either IA-32 VM86, Real Mode or Protected Mode into the 1A-64 instruction set
mode. Mode transitions between IA-32 Real Mode, Protected Mode and VM86 definitions are the
same as those defined in inéel Architecture Software Developer's Manual

| A-64 interface code is responsible for setting up and loading a consistent Protected Mode, Real
Mode, or VM86 environment (e.g. loading segment selectors and descriptors, etc.) as defined in
“Segment Descriptor and Environment Integrity” on page 6¥hb@ processor applies additional
segment descriptor checks to ensure operations are performed in a consistent manner.

IA-32 Application Register State Model

As shown inFigure 6-2andTable 6-1 IA-32 general purpose registers, segment selectors, and
segment descriptors, are mapped into the lower 32-bits of IA-64 general purpose registers GR8 to
GR31. The floating-point register stack, MMX technology registers and Streaming SIMD
Extension registers are mapped on |A-64 floating-point registers FR8 to FR31.

To promote straight-forward parameter passing, 1A-32 and 1A-64 integer and IEEE floating-point
register and memory data types are binary compatible between both 1A-32 and 1A-64 instruction
sets.

Some |A-64 registers are modified as a side-effect during IA-32 instruction set execution as noted
in Figure 6-2andTable 6-1 Generally, IA-64 system state is not affected by 1A-32 instruction set
execution. IA-64 code can reference all IA-64 and IA-32 registers, while IA-32 instruction set
references are confined to the 1A-32 visible application register state.

Registers are assigned the following conventions during transitions between 1A-32 and 1A-64
instruction sets.

* |A-32 state: Theregister contains an 1A-32 register during 1A-32 instruction set execution.
Expected 1A-32 values should be loaded before switching to the |A-32 instruction set. After
completion of 1A-32 instructions, these registers contain the results of the execution of 1A-32
instructions. These registers may contain any value during | A-64 instruction execution
according to | A-64 software conventions. Software should follow |A-32 and |A-64 calling
conventions for these registers.

* Modified: Registers marked as modified are used as scratch areas for execution of 1A-32
instructions by the processor and are not ensured to be preserved across instruction set
transitions.

¢ Shared: Shared registers contain values that have similar functionality in either instruction set.
For example, the stack pointer (ESP) and instruction pointer (1P) are shared.

¢ Unmodified: These registers are not altered by 1A-32 execution. | A-64 code can rely on these
values not being modified during | A-32 instruction set execution. The register will have the
same contents when entering the | A-32 instruction set and when exiting the 1A-32 instruction
set.
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Figure 6-2. 1A-32 Application Register Model
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Table 6-1. IA-32 Application Register Mapping

IA-64 Reg IA-32 Reg Convention | Size Description
General Purpose Integer Registers
GRO constant 0
GR1-3 modified’ scratch for IA-32 execution
GR4-7 unmodified IA-64 preserved registers
GR8 EAX
GR9 ECX
GR10 EDX
GR11 EBX
322 | 1A-32 general purpose registers
GR12 ESP
GR13 EBP
GR14 ESI
GR15 EDI
IA-32 state
GR16{15:0} | DS
GR16{31:16} | ES
GR16{47:32} | FS
GR16{63:48} | GS
64 IA-32 selectors
GR17{15:0} |CS
GR17{31:16} | SS
GR17{47:32} | LDT
GR17{63:48} | TSS
GR18-23 modified" scratch for IA-32 execution
GR24 ESD IA-32 state 64 IA-32 segment descriptors (register format)b
GR25-26 modified’ scratch for IA-32 execution
GR27 DSD
GR28 FSD
GR29 GSD IA-32 state 64 IA-32 segment descriptors (register format)b
GR30 LDTD®
GR31 GDTD
GR32-127 modified? IA-32 code execution space

Process Environment

P P shared 64 ‘ shared IA-32 and IA-64 virtual Instruction Pointer
Floating-point Registers

FRO constant +0.0

FR1 constant +1.0

FR2-5 unmodified IA-64 preserved registers

FR6-7 modified IA-32 code execution space
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Table 6-1. IA-32 Application Register Mapping (Cont'd)

IA-64 Application Developer’s Architecture Guide, Rev. 1.0

IA-64 Reg IA-32 Reg Convention | Size Description
FR8 MMO/FPO
FR9 MM1/ FP1
FR10 MM2/FP2
ER11 MM3/EP3 IA-32 MMX™ technology registers (aliased on 64-bit
IA-32 state gg/ FP mantissa)
FR12 MM4/ FP4 IA-32 FP registers (physical registers mapping)®
FR13 MM5/FP5
FR14 MM6/FP6
FR15 MM7/FP7
FR16-17 XMMO
FR18-19 XMM1
FR20-21 XMM2
FR22-23 XMM3 IA-32 Streaming SIMD Extension registers
IA-32 state 64 low order 64-bits of XMMO are mapped to FR16{63:0}
FR24-25 XMM4 high order 64-bits of XMMO are mapped to FR17{63:0}
FR26-27 XMM5
FR28-29 XMM6
FR30-31 XMM7
FR32-127 modified IA-32 code execution space
Predicate Registers
PRO constant 1
PR1-63 modified IA-32 code execution space
Branch Registers
BRO-5 unmodified IA-64 preserved registers
BR6-7 modified IA-32 code execution space
Application Registers
RSC
BSP o not used for IA-32 execution
unmodified .
BSPSTORE IA-64 preserved registers
RNAT
CCcVv modified 64 IA-32 code execution space
UNAT unmodified not used for IA-32 execution, IA-64 preserved
FPSR.sf0 unmodified IA-64 numeric status and controls
FPSR.sf1,2,3 modified IA-32 code execution space, modified during 1A-32

execution.
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Table 6-1. IA-32 Application Register Mapping (Cont'd)

6.2.1

IA-64 Reg IA-32 Reg Convention | Size Description
FSR FSW,FTW, 64 IA-32 numeric status and tag word and Streaming
MXCSR SIMD Extension status

FCR FCW, MXCSR 64 1A-32 numeric and Streaming SIMD Extension control

FIR FOP, FIP, FCS IA-32 state 64 1A-32 x87 numeric environment opcode, code selector
and IP

FDR FEA, FDS 64 1A-32 x87 numeric environment data selector and
offset

ITC TSC shared 64 shared IA-32 time stamp counter (TSC) and 1A-64

Interval Timer

PFS not used for IA-32 code execution, Prior EC is
preserved in PFM

LC unmodified )
IA-64 preserved registers
EC
EFLAG EFLAG 32 IA-32 System/Arithmetic flags,
writes of some bits condition by CPL and EFLAG.iopl.
CSD CsSD 64 1A-32 code segment (register format)b
SSD SSD IA-32 state IA-32 stack segment (register format)?
CFLG CRO/CR4 64 IA-32 control flags
CRO=CFLG{31:0}, CR4=CFLG{63:32}, writable at
CPL=0 only.

a. On transitions into the 1A-32 instruction set the upper 32-bits are ignored. On exit the upper 32-bits are sign extended from bit 31.

b. Segment descriptor formats differ from the 1A-32 memory format, see “IA-32 Segment Registers” on page 6-9 for details. Mod-
ification of a selector or descriptor does not set the access/busy bit in memory.

c. The GDT/LDT descriptors are NOT protected from modification by I1A-64 user level code.

d. All registers in the current and prior registers frames are modified during |1A-32 execution.

e. |A-32 floating-point register mappings are physical and do not reflect the 1A-32 top of stack value.

f. These registers are used by the processor and may be modified. Software should preserve required values before entering |1A-32
code.

IA-32 General Purpose Registers

Integer registers are mapped into the lower 32-bits of 1A-64 general registers GR8 to GR15. Values
in the upper 32-bits of GR8 to 15 are ignored on entry to | A-32 execution. After the |A-32
instruction set completes execution, the upper 32-bits of GR8 - GR15 are sign-extended from bit
31.

Based on |A-32 and 1A-64 calling conventions, the required | A-32 state must be loaded in memory
or registers by 1A-64 code before entering the |A-32 instruction set.

Figure 6-3. IA-32 General Registers (GR8 to GR15)

6.2.2

6-8

32 31 0

|

sign extended ] EAX.. EDI{31:0}

IA-32 Instruction Pointer

The processor maintains two instruction pointers for 1A-32 instruction set references, EIP (32-bit
effective address) and IP (a 64-hit virtual address equivalent to the IA-64 instruction set IP). IPis
generated by adding the code segment base to EIP and zero extending to 64-bits. IP should not be
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confused with the 16-bit effective address instruction pointer of the 8086. EIP is an offset within
the current code segment, while IP is a 64-bit virtual pointer shared with the 1A-64 instruction set.
The following relationship is defined between EIP and IP while executing 1A-32 instructions.

1 P{63:32} = 0;
IP{31:0} = EIP{31:0} + CSD.Base;

EIP is added to the code segment base and zero extended into a 64-bit virtual address on every
IA-32 instruction fetch. If during an | A-32 instruction fetch, EIP exceeds the code segment limit a
GPFault is generated on the referencing instruction. Effective instruction addresses (sequential
values or jump targets) above 4G-bytes are truncated to 32 bits, resulting in a4-G bytewrap around
condition.

IA-32 Segment Registers

| A-32 segment selectors and descriptors are mapped to GR16 - GR29 and AR25 - AR26.
Descriptors are maintained in an unscrambled format shown in Figure 6-5. This format differs
from the | A-32 scrambled memory descriptor format. The unscrambled register format is designed
to support fast conversion of 1A-32 segmented 16/32-bit pointersinto virtual addresses by 1A-64
code. |A-32 segment register load instructions unscramble the GDT/LDT memory format into the
descriptor register format on a segment register load. |A-64 software can also directly load
descriptor registers provided they are properly unscrambled by software. For acomplete definition
of al bit fields and field semantics refer to the Intel Architecture Software Developer’s Manual.

Figure 6-4. IA-32 Segment Register Selector Format

63

48 47 32 31 16 15 0

GS FS ES DS GR16

TSS LDT SS (O] GR17

Figure 6-5. IA-32 Code/Data Segment Register Descriptor Format
63 62 61 60 59 58 57 56 55 52 51 32 31

\g \d/b\ ig\av\ p\ dpl \s\ type lim{19:0} \

base{31:0}

Table 6-2. IA-32 Segment Register Fields

Field Bits Description
selector | 15:0 | Segment Selector value, see the Intel Architecture Software Developer’s Manual for bit
definition.
base 31:0 | Segment Base value. This value when zero extended to 64-bits, points to the start of the
segment in the 64-bit virtual address space for I1A-32 instruction set memory references.
lim 51:3 | Segment Limit. Contains the maximum effective address value within the segment for
2 expand up segments for IA-32 instruction set memory references. For expand down

segments, limit defines the minimum effective address within the segment. See the Intel
Architecture Software Developer’s Manual for details and segment limit fault conditions.
The segment limit is scaled by (lim << 12) | OxFFF if the segment’s g-bit is 1.

type 55:5 | Type identifier for data/code segments, including the Access bit (bit 52). See the Intel
2 Architecture Software Developer’s Manual for encodings and definition.

S 56 Non System Segment. If 1, a data segment, if 0 a system segment.

dpl 58:5 | Descriptor Privilege Level. The DPL is checked for memory access permission for |1A-32
7 instruction set memory references.
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Table 6-2. IA-32 Segment Register Fields (Cont'd)

Field Bits Description

p 59 Segment Present bit. If 0, and a IA-32 memory reference uses this segment an
IA_Exception (GPFault) is generated for data segments (CS, DS, ES, FS, GS) and an
1A-32_Exception (StackFault) for SS.

av 60 Ignored - For the CS, SS descriptors reads of this field return zeros. For the DS, ES, FS,
and GS descriptors reads of this field return the last value written by 1A-64 code. Reads of
this field return zero if written by 1A-32 descriptor loads.This field is ignored by the
processor during 1A-32 instruction set execution. Available for software use, there will be no
future use for this field.

ig 61 Ignored - For the CS, SS descriptors reads of this field return zeros. For the DS, ES, FS,
and GS descriptors reads of this field return the last value written by 1A-64 code. Reads of
this field return zero if written by 1A-32 descriptor loads.This field is ignored by the
processor during IA-32 instruction set execution. This field may have a future use and
should be set to zero by software.

d/b 62 Segment Size. If 0, IA-32 instruction set effective addresses within the segment are
truncated to 16-bits. Otherwise, effective addresses are 32-bits. The code segment’s d/b-bit
also controls the default operand size for IA-32 instructions. If 1, the default operand size is
32-hits, otherwise 16-bits.

g 63 Segment Limit Granularity. If 1, scales the segment limit by lim=(lim<<12) | OxFFF for IA-32
instruction set memory references. This field is ignored for IA-64 instruction set memory
references.

6.2.3.1 Data and Code Segments

On thetransition into A-32 code, the | A-32 segment descriptor and selector registers (GDT, LDT,
DS, ES, CS, SS, FS and GS) must be initialized by 1A-64 code to the required values based on
IA-32 and | A-64 calling conventions and the segmentation model used.

| A-64 code may manually load a descriptor with an 8-byte fetch from the LDT/GDT, unscramble
the descriptor and write the segment base, limit and attribute. Alternately, | A-64 software can
switch to the 1A-32 instruction set and perform the required segment load with an 1A-32 Mov Sreg
instruction. If 1A-64 code explicitly loads the segment descriptors, it isresponsible for theintegrity
of the segment descriptor.

The processor does not ensure coherency between descriptors in memory and the descriptor
registers, nor does the processor set segment access bitsin the LDT/GDT if segment registers are
loaded by 1A-64 instructions.

6.2.3.2 Segment Descriptor and Environment Integrity

For 1A-32 instruction set execution, most segment protection checks are applied by the processor
when the segment descriptor isloaded by | A-32 instructions into a segment register. However,
segment descriptor loads from the | A-64 instruction set into the general purpose register file
perform no such protection checks, nor are segment Access-bits updated by the processor.

If 1A-64 software directly loads a descriptor it is responsible for the validity of the descriptor, and

ensuring integrity of the |A-32 Protected Mode, Real Mode or VM 86 environments. Table 6-3

defines software guidelines for establishing the initial 1A-32 environment. The processor checks
theintegrity of the | A-32 environment asdefined in Section 6.2.3.3, “IA-32 Environment Run-time
Integrity Checks” on page 6-18n the transitions between IA-64 and IA-32 code, the processor
does NOT alter the base, limit or attribute values of any segment descriptor, nor is there a change in
privilege level.
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Table 6-3. 1A-32 Environment Initial Register State

Register Field Real Mode Protected Mode VM86Mode
PSR cpl 0 privilege level 3
EFLAG vm 0 0 1
CRO pe 0 1 1
selector base >> 42 selector base >> 4
base selector << 4P base selector << 4
dpl PSR.cpl (0) PSR.cpl® PSR.cpl (3)
d-bit 16-bit? 16/32-bit 16-bit
cs type data rd/wr, expand execute data rd/wr, expand
up up
s-bit 1 1 1
p-bit 1 1 1
a-bit 1 1 1
g-bit/limit OXFFFF® limit OXFFFF
selector base >> 42 selector base >> 4
base selector << 4P base selector << 4
dpl PSR.cpl (0) PSR.cpl PSR.cpl (3)
d-bit 16-bit® 16/32-bit size 16-bit
ss type data rd/wr, expand data types data rd/wr, expand
up up
s-bit 1 1 1
p-bit 1 1 1
a-bit 1 1 1
g-bit/limit OXFFFF® limit OXFFFF
selector base >> 42 selector base >> 4
base selector << 4P base selector << 4
dpl dpl >= PSR.cpl (0) dpl >= PSR.cpl dpl >= PSR.cpl (3)
d-bit 16-bit® 16/32-bit 0
DS, ES, FS, GS type data rd/vl\:[), expand data types data rd/vl\J/:J, expand
s-bit 1 1 1
a-bit 1 1 1
p-bit 1 1/0f 1
g-bit/limit OXFFFF® limit OXFFFF
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Table 6-3. IA-32 Environment Initial Register State (Cont’d)

Register Field Real Mode Protected Mode VM86Mode
PSR cpl 0 privilege level 3
EFLAG vm 0 0 1
CRO pe 0 1 1
selector selector
base base
dpl dpl >= PSR.cpl
d-bit 0
LDT,GDT, type na Idt/gdt/tss types
TSS
s-bit 0
p-bit 1
a-bit 1
g-bit/limit limit

a. Selectors should be set to 16*base for normal RM 64KB operation.

b. Segment base should be set to selector/16 for normal RM 64KB operation.

c. Unless a conforming code segment is specified.

d. Segment size should be set to 16-bits for normal RM 64KB operation.

e. Segment limit should be set to OxFFFF for normal RM 64KB operation.

f. For valid segments the p-bit should be set to 1, for null segments the p-bit should be set to 0.

6.2.3.2.1 Protected Mode

| A-64 software should follow these rules for setting up the segment descriptors for Protected Mode
environment before entering the | A-32 instruction set:
* |A-64 software should ensure the stack segment descriptor register's DPL==PSR.cpl.

* For DSD, ESD, FSD and GSD segment descriptor registers, |A-64 software should ensure
DPL>=PSR.cpl.

* For CSD segment descriptor register, |A-64 software should ensure DPL==PSR.cpl (except
for conforming code segments).

¢ Software should ensure that all code, stack and data segment descriptor registers do not
contain encodings for any system segments.

¢ Software should ensure the a-bit of all segment descriptor registers are set to 1.

¢ Software should ensure the p-bit is set to 1 for all valid data segments and to O for all NULL
data segments.

6.2.3.2.2 VM86

| A-64 software should follow these rules when setting up segment descriptors for the VM 86
environment before entering the | A-32 instruction set:
¢ PSR.cpl must be 3 (or IPSR.cpl must be 3forrfi).

* |A-64 software should ensure the stack segment descriptor register's DPL==PSR.cpl==3 and
set to 16-bit, data read/write, expand up.

* For CSD, DSD, ESD, FSD and GSD segment descriptor registers, |A-64 software should
ensure DPL==3, the segment is set to 16-bit, data read/write, expand up.
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¢ Software should ensure that all code, stack and data segment descriptor registers do not
contain encodings for any system segments.

¢ Software should ensure the P-bit and A-bit of all segment descriptor registersis one.

¢ Software should ensure that the relationship Base = Selector* 16, is maintained for all DSD,
CSD, ESD, SSD, FSD, and GSD segment descriptor registers, otherwise processor operation
is unpredictable.

¢ Software should ensure that the DSD, CSD, ESD, SSD, FSD, and GSD segment descriptor
register’s limit value is set to OXFFFF, otherwise spurious segment limit faults (GPFault or
Stack Faults) may be generated.

* |A-64 software should ensure all segment descriptor registers are dataread/write, including the
code segment. The processor will ignore execute permission faults.

6.2.3.2.3 Real Mode

| A-64 software should follow these rules when setting up segment descriptors for the Real Mode
environments before entering the 1 A-32 instruction set, otherwise software operation is
unpredictable.

* |A-64 software should ensure PSR.cpl is 0.
* |A-64 software should ensure the stack segment descriptor register’'s DPL is 0.

¢ Software should ensure that all code, stack and data segment descriptor registers do not
contain encodings for any system segments.

¢ Software should ensure the P-bit and A-bit of all segment descriptor registersis one.

* For normal real mode 64K operations, software should ensure that the relationship Base =
Selector* 16, is maintained for all DSD, CSD, ESD, SSD, FSD, and GSD segment descriptor
registers.

¢ For normal real mode 64K operations, software should ensure that the DSD, CSD, ESD, SSD,
FSD, and GSD segment descriptor register’s limit value is set to OXFFFF and the segment size
is set to 16-hit (64K).

* |A-64 software should ensure all segment descriptor registers indicate readable, writable,
including the code segment for normal Real M ode operation.

6.2.3.3 IA-32 Environment Run-time Integrity Checks

| A-64 processors perform additional run-time checksto verify the integrity of the 1A-32
environments. These checks are in addition to the run-time checks defined on 1A-32 processors and
are high-lighted in Table 6-4. Existing | A-32 run-time checks are listed but not highlighted.
Descriptor fields not listed in the table are not checked. As defined in the table, run-time checks are
performed either on 1A-32 instruction code fetches or on an |A-32 datamemory reference to one of
the specified segment registers. These run-time checks are not performed during 1A-64 to 1A-32
instruction set transitions.

IA-64 Application Developer’s Architecture Guide, Rev. 1.0 6-13



Table 6-4.

6-14

IA-32 Environment Run Time Integrity Checks

Reference Resource Real Mode Protected Mode VM86Mode Fault
PSR.cpl isnot0 ignored isnot 3
Code Fetch
all code E(':::;LAS'V? EFLAG.vm is 1 and CFLG.pe is 0 Fault
fetches P (GPFault(0))
a
EFLAG.vif EFLAG.vip & EFLAG.vif & CFLG.pe & PSR.cpl==3 &
EFLAG.vip (CFLG.pvi | (EFLAG.vm & CFLG.vme))
dpl dplis not 3
ignored
d-bit is not 16-bit
all code fetches type ignored (can be exec or data) Code Fletch
Fault
Cs GPFault if data expand down (GPFault(0))
s, p, a-bits are not 1
g-bit/limit segment limit violation
dpl dpl!=PSR.cpl
d-bit ignored is not 16-bit
data memory type ignored data expand down
references to Stack Fault
sSS read and not readable, write and not writeable
s, p, a-bits are not 1
g-bit/limit segment limit violation
dpl ignored
d-bit ignored is not 16-bit
data memory -
references to type ignored data expand down
DS ES. FS and GPFault(0)
s an read and not readable, write and not writeable
s, p, a-bits are not 1
g-bit/limit segment limit violation
dpl ignored
d-bit ignored is not 16-bit
type ignored data expand down
data memory
references to rd/wr checks are rd and not rd/wr checks are GPFault(0)
CcS ignored readable, wr and ignored
not writeable
s, p, a-bits are not 1
g-bit/limit segment limit violation
dpl ignored
type ignored
memory - :
references to s-bit is not 0 GPFault
LDT,GDT, a d-bits ignored (Selector/0)°
TSS '
p-bit isnot 1
g-bit/limit segment limit violation

a. Code Fetch Faults are delivered as higher priority GPFault(0).
b. The GP Fault error code is the selector value if the reference is to GDT or LDT. Otherwise the error code is zero.
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6.2.4 IA-32 Application EFLAG Register

The EFLAG (AR24) register is made up of two major components, user arithmetic flags (CF, PF,
AF, ZF, SF, OF, and ID) and system control flags (TF, IF, IOPL, NT, RF, VM, AC, VIF, VIP). None
of the arithmetic or system flags affect 1A-64 instruction execution.

Figure 6-6. IA-32 EFLAG Register (AR24)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| reserved (set to 0) ||d|V|p|V|f|ac|vm|rf|Olntl iopl Iofldfl|f|tf|sf|zf|0|af|0|pf|1|cf‘
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33
| reserved (set to 0) ‘

The arithmetic flags are used by the |A-32 instruction set to reflect the status of 1 A-32 operations,
control 1A-32 string operations, and control branch conditions for |A-32 instructions. These flags
areignored by IA-64 instructions. Flags ID, OF, DF, SF, ZF, AF, PF and CF are defined in the
Intel Architecture Software Developer’s Manual

Table 6-5. IA-32 EFLAGS Register Fields

EFLAG? Bits Description
cf 0 IA-32 Carry Flag. See the Intel Architecture Software Developer’s Manual for details.
1 Ignored - Writes are ignored, reads return one for I1A-32 and |A-64 instructions.
3,5, Ignored - Writes are ignored, reads return zero for IA-32 and IA-64 instructions. Software
15 should set these bits to zero.
pf 2 IA-32 Parity Flag. See the Intel Architecture Software Developer’s Manual for details.
af 4 IA-32 Aux Flag. See the Intel Architecture Software Developer’s Manual for details.
zf 6 IA-32 Zero Flag. See the Intel Architecture Software Developer’s Manual for details.
sf 7 IA-32 Sign Flag. See the Intel Architecture Software Developer’s Manual for details.
tf 8 IA-32 System EFLAG Register
if 9
df 10 IA-32 Direction Flag. See the Intel Architecture Software Developer’s Manual for details.
of 11 IA-32 Overflow Flag. See the Intel Architecture Software Developer’s Manual for details.
iopl 13:12
nt 14
i 16 1A-32 System EFLAG Register
vm 17
ac 18
vif 19
vip 20
id 21
63:22 | Reserved must be set to zero

a. On entry into the 1A-32 instruction set all bits may be read by subsequent IA-32 instructions, after exit from the 1A-32 instruction
set these bits represent the results of all prior IA-32 instructions. None of the EFLAG bits alter the behavior of IA-64 instruction
set execution.
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IA-32 Floating-point Registers

| A-32 floating-point register stack, numeric controls and environment are mapped into the |A-64
floating-point registers FR8 - FR15 and the application register name space as shown in Table 6-6.

Table 6-6. IA-32 Floating-point Register Mappings

6.2.5.1

6.2.5.2

6-16

I1A-64 Reg I1A-32 Reg (?if?) Description
FR8 ST[(TOS + N)==0]
FR9 ST[(TOS + N)==1]
FR10 ST[(TOS + N)==2] 1A-32 numeric register stack
FR11 | ST[(TOS + N)==3] 80 IA-64 accesses to FRS - FR15 ignore the IA-32 TOS
FR12 ST[(TOS + N)==4] adjustment _
IA-32 accesses use the TOS adjustment for a given
FR13 ST[(TOS + N)==5] register N
FR14 ST[(TOS + N)==6]
FR15 ST[(TOS + N)==7]
FCR FCW, MXCSR 64 IA-32 numeric and Streaming SIMD Extension control
(AR21) register
FSR FSW,FTW, MXCSR 64 IA-32 numeric and Streaming SIMD Extension status and
(AR28) tag word
FIR (AR29) | FOP, FCS, FIP 64 1A-32 numeric instruction pointer
FDR FDS, FEA 48 1A-32 numeric data pointer
(AR30)

IA-32 Floating-point Stack

I A-32 floating-point registers are defined as follows:

* |A-32 numeric register stack is mapped to FR8 - FR15, using the Intel 8087 80-bit IEEE
floating-point format.

* For IA-32 instruction set references, floating-point registers are logically mapped into FR8 -
FR15 based on the | A-32 top-of-stack (TOS) pointer held in FCR.top. FR8 represents a
physical register after the TOS adjustment and is not necessarily the top of the logical

floating-point register stack.

* For |A-64 instruction set references, the floating-point register numbers are physical and not a
function of the numeric TOS pointer, e.g. references to FR8 always return the value in physical
register FR8 regardless of the TOS value. | A-64 software cannot necessarily assume that FR8
contains the I1A-32 logical register ST(0). It is highly recommended that typically 1A-32
calling conventions be used which pass floating-point values through memory.

IA-32/IA-64 Special Cases

For 1A-32 floating-point instructions, loading a single or double denormal resultsin anormalized
double-extended value placed in the target floating-point register. For |A-64 instructions, loading a
single or double denormal results in an un-normalized denormal value placed in the target
floating-point register. There are two 1A-64 canonical exponent values which indicate single
precision and double precision denormals.
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When transferring floating-point values from 1A-64 to 1A-32 instructions, it is highly
recommended that typical |A-32 calling conventions be followed which pass floating-point values
through the memory stack. If software does pass floating-point values from |A-64 to |A-32 code
viathe floating-point registers, software must ensure the following:

* |A-64 single or double precision denormals must be converted into a normalized double
extended precision value expected by | A-32 instructions. Software can convert |1A-64
denormals by multiplying by 1.0 in double extended precision (f ma. sfx fr = fr, f1,f0).
If anillegal single or double precision denormal is encountered in |A-32 floating-point
operations, an |A-32 Exception (FPError Invalid Operand) fault is generated.

¢ Foating-point values must be within the range of the | A-32 80-bit (15-bit exponent) double
extended precision format. |A-64 allows 82-hit (17-bit widest range exponent) for
intermediate cal cul ations. Software must ensure all 1A-64 floating-point register values passed
to IA-32 instructions are representabl e in double extended precision 80-bit format, otherwise
processor operation is model specific and undefined. Undefined behavior can include but is
not limited to: the generation of an |A-32_Exception (FPError Invalid Operation) fault when
used by an 1A-32 floating-point instruction, rounding of out-of-range values to zero/denormal/
infinity and possible |A-32_Exception (FPError Overflow/Underflow) faults, or float-point
register(s) containing out of range values silently converted to QNAN or SNAN (conversion
could occur during entry to the |A-32 instruction set or on use by an | A-32 floating-point
instruction). Software can ensure all passed floating-point register values are within range by
multiplying by 1.0 in double extended precision format (with widest range exponent disabled)
byusingfma.sfx fr = fr,f1,f0.

* |A-64 floating-point NaTVal values must not be propagated into 1A-32 floating-point
instructions, otherwise processor operation is model specific and undefined. Processors may
silently convert floating-point register(s) containing NaT Val to a SNAN (during entry to the
I A-32 instruction set or on aconsuming |A-32 floating-point instruction). Dependent | A-32
floating-point instructions that directly or indirectly consume a propagated NaT Val register
will either propagate the NaTVal indication or generate an |A-32_Exception (FPError Invalid
Operand) fault. Whether a processor generates the fault or propagates the NaTVal is model
specific. In no case will the processor allow aNaTVal register to be used without either
propagating the NaTVal or generating an 1A-32_Exception (FPError Invalid Operand) fault.
Note: it isnot possiblefor |A-32 codeto read aNaTVal from amemory location with an 1A-32
floating-point load instruction, since a NatVal can not be expressed by a 80-bit double
extended precision number.

It is highly recommended that floating-point values be passed on the memory stack per typical
IA-32 calling conventions to avoid numeric problems with NatVal and 1A-64 denormals.

IA-32 Floating-point Control Registers

FPSR controls | A-64 floating-point instructions control and status bits. FPSR does not control

| A-32 floating-point instructions or reflect the status of | A-32 floating-point instructions. 1A-32
floating-point and Streaming SIMD Extension instructions have separate control and status
registers, namely FCR (floating-point control register) and FSR (floating-point status register).

FCR contains the |A-32 FCW bits and all Streaming SIMD Extension control bits as shown in
Figure 6-7.

FSR contains the 1A-32 floating-point status flags FSW, FTW, and Streaming SIMD Extension
status fields as shown in Figure 6-8. The Tag fields indicate whether the corresponding | A-32
logical floating-point register is empty. Tag encodings for zero and special conditions such as Nan,
Infinity or Denormal of each IA-32 logical floating-point register are not supported. However,
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IA-32 instruction set reads of FTW compute the additional special conditions of each |A-32
floating-point register. |A-64 code can issue a floating-point classify operation to determine the
disposition of each |A-32 floating-point register.

FCR and FSR collectively hold all 1A-32 floating-point control, status and tag information. |A-32
instructions that are updated and controlled by MXSCR, FCW, FSW and FTAG effectively update
FSR and are controlled by FSR. IA-32 reads/writes of MXCSR, FSW, FCW and FTW return the
sameinformation as | A-64 reads/writes of FSR and FCR.

Software must ensure that FCR and FSR are properly loaded for 1A-32 numeric execution before
entering the |A-32 instruction set.

Figure 6-7. IA-32 Floating-point Control Register (FCR)

| IA-32 FCW{12:0}
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
|

reserved (set to 0) ICl RC | PC |O|1 P|U|O|Z|D
MIM|M|M|M|M

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

reserved (set to 0) F| RC |[P/UOCZMD|I |rv ignored
VA MMM M|M

1A-32 MXCSR (control)

Figure 6-8. IA-32 Floating-point Status Register (FSR)

IA-32 FTW{15:0} | IA-32 FSW{15:0}
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
o/T/o|T|{o|T|O0|T|O|T|O|T|O|T|OTG B|C| TOP |C|C|C|E|S|P|U|O|Z|D|I
G G G G| G3 |G G 0 3 2|/1/0|S|F|E|E|E|E|E|E

7 6 5 4 2 1
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
reserved (set to 0) ignored rv| P UEOE Z DE| |
E E E
IA-32 MXCSR (status)
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Table 6-7. IA-32 Floating-point Control Register Mapping (FCR)

IA-64 Usage

1A-64 .

IA-32 State State Bits IA-32 Usage

FCW, MXCSR state in the FCR Register

FCW.im FCR.im 0 Invalid operation Mask

FCW.dm FCR.dm 1 Denormalized operand Mask

FCW.zm FCR.zm 2 Zero divide Mask

FCW.om FCR.om 3 Overflow Mask

FCW.um FCR.um 4 Underflow Mask

FCW.pm FCR.pm 5 Precision Mask

ignored 6 Ignored - Writes are ignored, reads return 1.

ignored 7,32:37 | Ignored - Writes are ignored, reads return 0

reserved 13:31,38 | Reserved

,48:63

FCW.pc FCR.pc 8:9 Precision Control (00- single, 10- double, 11-
extended)

FCW.rc FCR.rc 10:11 Rounding (00-even, 01-down, 10-up,
11-truncate)

FCW.ic FCR.ic 12 (Infinity Control) - Ignored by All 1A-64
processors, provided for compatibility with
IA-32 processors.

MXCSR.im | FCR.im 39 Streaming SIMD Extension Invalid operation
Mask

MXCSR.dm | FCR.dm 40 Streaming SIMD Extension Denormalize
operand Mask

MXCSR.zm | FCR.zm 41 Streaming SIMD Extension Zero divide Mask

MXCSR.om | FCR.om 42 Streaming SIMD Extension Overflow Mask

MXCSR.um | FCR.um 43 Streaming SIMD Extension Underflow Mask

MXCSR.pm | FCR.pm 44 Streaming SIMD Extension Precision Mask

MXCSR.rc | FCR.rc 45:46 Streaming SIMD Extension Rounding
(00-even,01-down, 10-up, 11-truncate)

MXCSR.fz FCR.fz 47 Streaming SIMD Extension Flush to Zero

None of these IA-32
numeric and
Streaming SIMD
Extension control bits
affect the execution of
1A-64 floating-point
instructions.

See Intel Architecture
Software Developer’s
Manual for details on

each field.
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Table 6-8. IA-32 Floating-point Status Register Mapping (FSR)

intel.

1A-64 .
IA-32 State State Bits IA-32 Usage IA-64 Usage
FSW, FTW, MXCSR state in the FSR Register
FSW.ie FSR.ie 0 Invalid operation Exception
FSW.de FSR.de 1 Denormalized operand Exception
FSW.ze FSR.ze 2 Zero divide Exception
FSW.oe FSR.oe 3 Overflow Exception
FSW.ue FSR.ue 4 Underflow Exception None of these bits
— - reflect the status of
FSW.pe FSR.pe 5 Precision Exception IA-64 floating-point
FSW.sf FSRsf |6 Stack Fault execution.
FSW.es FSR.es? 7 Error Summary )
See Intel Architecture
FSW.c3:0 FSR.c3:0 | 8:10,14 | Numeric Condition codes Software Developer’s
- - Manual for I1A-32
FSW.top FSR.top 11:13 Top of IA-32 numeric stack numeric flag details
FSW.b FSR.b 15 1A-32 FPU Busy always equals state of
FSW.ES
FTW FSR.tg 16,18,20 | Numeric Tags 0-NotEmpty, 1-Empty®
(7:0 ,22,24,2
’ 6,28,30
zeros 17,19,21 | Ignored - Writes are ignored, reads return zero
,23,25,2
7,29,31,
39:47
MXCSR.ie | FSR.ie 32 Streaming SIMD Extension Invalid operation
Exception
MXCSR.de | FSR.de 33 Streaming SIMD Extension Denormalized
operand Exception Does not reflect the
MXCSR.ze | FSR.ze 34 Streaming SIMD Extension Zero divide status of IA-64
Exception floatlng-pomt
execution.
MXCSR.oe | FSR.oe 35 Streaming SIMD Extension Overflow
Exception
See 1A-32 Intel
MXCSR.ue | FSR.ue 36 Streaming SIMD Extension Underflow Architecture Software
Exception Developer’s Manual
- - - for details.
MXCSR.pe | FSR.pe 37 Streaming SIMD Extension Precision
Exception
reserved 38, Reserved
48:63
ignored 39:47 Ignored - Writes are ignored, reads return zero

a. Exception Summary bit, see Section 6.2.5.4 for details.

b. Tag encodings indicate whether each 1A-32 numeric register contains an zero, NaN, Infinity or Denormal are not supported by
IA-64 reads of FSR. IA-32 instruction set reads of the FTW field do return zero, Nan, Infinity and Denormal classifications.

c. AllMMX™ technology instructions set all Numeric Tags to 0 = NotEmpty. However, MMX technology instruction EMMS sets all

Numeric Tags to 1 = Empty.
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6.2.5.4 IA-32 Floating-point Environment

To support the Intel 8087 delayed numeric exception model, FSR, FDR and FIR contain pending
information related to the numeric exception. FDR contains the operand’s effective address and
segment selector. FIR contains the numeric instruction’s effective address, code segment selector,
and opcode bits. FSR summaries the type of numeric exception in the IE, DE, ZE, OE, UE, PE, SF
and ES-bits. The ES-bit summarizes the IA-32 floating-point exception status as follows:

* When FSR.esisread by |A-64 code, the value returned is a summary of any unmasked
pending exceptions contained inthe FSR, |E, DE, ZE, OE, UE, PE, and SF bits. Note: reads of
the ES-hit do not necessarily return the last value written if the ES-bit isinconsistent with the
other pending exception bitsin FSR.

* When FSR.esisset to al by I1A-64 code, delayed |A-32 numeric exceptions are generated on
the next 1A-32 floating-point instruction, regardless of numeric exception information written
into FSR hits; |IE, DE, ZE, OE, UE, PE, and SF.

* When FSR.esiswritten with inconsistent state with respect to the FSR bits (IE, DE, ZE,
OE,PE and SF), subsequent numeric exceptions may report inconsistent floating-point status
bits.

FSR, FDR, and FIR must be preserved across a context switch to generate and accurately report
numeric exceptions.

Figure 6-9. Floating-point Data Register (FDR)
31 30 20 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ operand offset (fea) ‘
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

‘ reserved (set to 0) ’ operand selector (fds) ‘

Figure 6-10. Floating-point Instruction Register (FIR)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ code offset (fip) ‘
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

‘ reserved ‘ opcode {10:0} (fop) ‘ code selector (fcs) ‘

6.2.6 IA-32 MMX™ Technology Registers

Theeight IA-32 MM X technology registers are mapped on the eight 1A-64 floating registers FR8 -
FR15. Where MMO is mapped to FR8 and MM 7 is mapped to FR15. The MM X technology
register mapping for the 1A-32 floating-point stack view is dependent on the floating-point 1A-32
Top-of-Stack value.

Figure 6-11. IA-32 MMX™ Technology Registers (MMO to MM7)

81 80 64 63 0
\ 1| ones MMO..MM7{31:0} FR8-15

* When avaueiswritten to an MM X technology register using an 1A-32 MM X technol ogy
instruction:

— The exponent field of the corresponding floating-point register (bits 80-64) and the sign
bit (bit 81) are set to all ones.

— The mantissa (bits 63-0) is set to the MMX technology data value.
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* When avalueisread fromaMMX technology register by an IA-32 MM X technology
instruction:

— The exponent field of the corresponding floating-point register (bits 80-64) and its sign bit
(bit 81) are ignored, including any NaTVal encodings.

As a result of this mapping, the mantissa of a floating-point value written by either IA-32 or 1A-64
floating-point instructions will also appear in an IA-32 MMX technology register. An IA-32 MMX
technology register will also appear in one of the eight mapped floating-point register’s mantissa
field.

To avoid performance degradation, software programmers are strongly recommended not to

intermix 1A-32 floating and 1A-32 MMX technology instructions. Seeltfitel Architecture
Software Developer’s Manufdr MM X technology coding guidelines for details.

6.2.7 IA-32 Streaming SIMD Extension Registers
The eight 128-bit |A-32 Streaming SIMD Extension registers (XMMO-7) are mapped on sixteen
physical |1A-64 floating register pairs FR16 - FR31. The low order 64-bits of XMMO are mapped to
FR16{ 63:0}, and the high order 64-bits of XMMO0 are mapped to FR17{63:0} .

Figure 6-12. Streaming SIMD Extension registers (XMMO-XMM?7)

81 80 64 63 0

\ 0| 0x1003E | XMMO-7{127:64} | FR17-31, odd
81 80 64 63 0
o] 0x1003E | XMMO-7{63:0} | FR16-30, even

* When avalueiswritten to an Streaming SIMD Extension register using |A-32 Streaming
SIMD Extension instructions:

— The exponent field of the corresponding 1A-64 floating-point register (bits 80-64) is set to
0x1003E and the sign bit (bit 81) is set to 0.

— The mantissa (bits 63-0) is set to the XMM data value bits{63:0} for even registers and
bits{127:64} for odd registers.

* When a Streaming SIMD Extension register isread using |A-32 Streaming SIMD Extension
instructions:

— The exponent field of the corresponding 1A-64 floating-point register (bits 80-64) and the
sign bit (bit 81) are ignored, including any NaTVal encodings.

6.3 Memory Model Overview

Virtual addresses within either the 1A-64 or 1A-32 instruction set are defined to address the same
physical memory location. I1A-64 instructions directly generate 64-bit virtual addresses. 1A-32
instructions generate 16 or 32-bit effective addresses that are then converted into 32-bit virtual
addresses by IA-32 segmentation. 32-bit virtual addresses are then converted into 64-bit virtual
addresses by zero extending to 64-bits. Zero extension places all IA-32 memory references in the
lower 4G-bytes of the 64-bit virtual address space. Virtual addresses generated by either instruction
set are then translated into physical addresses using IA-64 memory management mechanisms.
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Figure 6-13. Memory Addressing Model

6.3.1

6.3.2

16/32-bit 32-bit virtual 64-bit virtual
effective address address address
Base — 4
IA-32 tati Zero
Index Segmentation Extend |
Displacement—{
1A-64 Base |

Memory Endianess

Memory integer and floating-point (IEEE) datatypes are binary compatible between the |A-32 and
|A-64 instruction sets. |A-64 applications and operating systems that interact with |A-32 code
should use “little-endian” accesses to ensure that memory formats are the same. All 1A-32
instruction data and instruction memory references are forced to “little-endian”.

IA-32 Segmentation

Segmentation is not used for IA-64 instruction set memory references. Segmentation is performed
on IA-32 instruction set memory references based on the state of EFLAG.vm and CFLG.pe. Either
Real Mode, VM86, or Protected Mode segmentation rules are followed as definethielthe
Architecture Software Developer’s Manuspecifically:

¢ |A-32 Data 16/32-bit Effective Addresses: 16 or 32-bit effective addresses are generated,

based on CSD.d, SSD.b and prefix overrides, by the addition of a base register, scaled index
register and 16/32-bit displacement value. Starting effective addresses (first byte of multi-byte
operands) larger than 16 or 32 hits are truncated to 16 or 32-bits. Ending (last byte of
multi-byte operands) 16-bit effective addresses can extend above the 64K byte boundary,
however, ending 32-bit effective addresses are truncated to 32-bits and do not extend above
the 4G-byte effective address boundary. Refer to the Intel Architecture Software Developer’s
Manualfor complete details on wrap conditions.

| A-32 Code 16/32-bit Effective Addresses: 16 or 32-bit EIP, based on CSD.d, is used asthe
effective address. Starting EIP values (first byte of multi-byte instruction) larger than 16 or 32
bits are truncated to 16 or 32-bits. Ending (last byte of multi-byte instruction) 16-bit effective
addresses can extend above the 64K byte boundary, however, ending 32-bit EIP values are
truncated to 32-bits and do not extend above the 4G-byte effective address boundary.

I A-32 32-bit Virtual Address Generation: The resultant 16 or 32-bit effective addressis
mapped into the 32-hit virtual address space by the addition of a segment base. Full segment
protection and limit checks are verified as specified by the Intel Architecture Software
Developer’s Manuaénd additional checks as specified in this section. Starting 32-bit virtual
addresses are truncated to 32-bits after the addition of the segment base. Ending virtual
address (last byte of a multiple byte operand or instruction) is truncated (wrapped) at the
4G-byte virtual boundary

| A-32 64-bit Address Generation: The resultant 32-bit virtual addressis converted into a
64-hit virtual address by zero extending to 64-hits, this places all 1A-32 instruction set memory
references within the first 4G-bytes of the 64-bit virtual address space.
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If IA-32 code is utilizing aflat segmented model (segment bases are set to zero) then |A-32 and

I A-64 code can freely exchange pointers after a pointer has been zero extended to 64-bits. For
segmented | A-32 code, effective address pointers must be first transformed into avirtual address
before they are shared with |A-64 code.

Self Modifying Code

While operating in the | A-32 instruction set, self modifying code and instruction cache coherency
(coherency with respect to the local processor’s data cache) is supported for all IA-32 programs.
Self modifying code detection is directly supported at the same level of compatibility as the
Pentium processor. Software must insert an 1A-32 branch instruction between the store operation
and the instruction modified for the updated instruction bytes to be recognized.

When switching from the 1A-64 to the I1A-32 instruction set, and while executing I1A-64

instructions, self modifying code and instruction cache coherency are not directly supported by the
processor hardware. Specifically, if a modification is made to 1A-32 instructions by IA-64
instructions, IA-64 code must explicitly synchronize the instruction caches with the code sequence
defined inSection 4.4.6.2, “Memory Consistency” on page 4Qtherwise the modification may

or may not be observed by subsequent 1A-32 instructions.

When switching from the IA-32 to the 1A-64 instruction sets, modification of the local instruction
cache contents by 1A-32 instructions is detected by the processor hardware. The processor ensures
that the instruction cache is made coherent with respect to the modification and all subsequent
IA-64 instruction fetches see the modification.

IA-32 Usage of IA-64 Registers

This section lists software considerations for the 1A-64 general and floating-point registers, and the
ALAT when interacting with 1A-32 code.

IA-64 Register Stack Engine

Software must ensure that all dirty registers in the register stack have been flushed to the backing
store using &l ushrs instruction before starting 1A-32 execution either viatthei a or rfi .

Any dirty registers left in the current and prior register stack frames will be modified. For details on
register stack, refer t8ection 4.1, “Register Stack” on page 4-1

Once IA-32 instruction set execution is entered, the RSE is effectively disabled, regardless of any
RSE control register enabling conditions.

After exiting the 1A-32 instruction set due td @pe instruction or interruption, all stacked registers
are marked as invalid and the number of clean registers is set to zero.

IA-64 ALAT

IA-32 instruction set execution leaves the contents of the ALAT undefined. Software cannot rely
on ALAT values being preserved across an instruction set transition. On entry to IA-32 code,
existing entries in the ALAT are ignored. For details on ALAT, ref&dotion 4.4.5.2, “Data
Speculation and Instructions” on page 4-17
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IA-64 NaT/NaTVal Response for 1A-32 Instructions

If 1A-64 code setsaNaT condition in the integer registers or aNaTVal condition in afloating-point
register, MM X technology register or Streaming SIMD Extension register before switching to the
IA-32 instruction set the following conditions can arise:

* |A-32 dependent instructions that directly or indirectly consume a propagated NaT register

will either propagate the NaT indication or generate a NaT Register Consumption abort.
Whether a processor generates a NaT Register Consumption abort or propagates the NaT is
model specific. NaT Register Consumption aborts encountered during 1A-32 execution may
terminate |A-32 instructions in the middle of execution with some architectural state already
modified. In no case will the processor allow a NaTed input register to be used without either
propagating the NaT or generating a NaT Register Consumption fault.

| A-64 floating-point NaTVal values must not be propagated into | A-32 floating-point
instructions, otherwise processor operation is model specific and undefined. Processors may
convert floating-point register(s) containing NaTVal to a SNAN (during entry to the IA-32
instruction set or on a consuming 1A-32 floating-point instruction). Dependent 1A-32
floating-point instructions that directly or indirectly consume a propagated NaT Val register
will either propagate the NaTVal indication or generate an | A-32_Exception (FPError Invalid
Operand) fault. Whether a processor generates the fault or propagates the NaT Val is model
specific. In no case will the processor allow aNaTVal register to be used without either
propagating the NaTVal or generating an 1A-32_Exception (FPError Invalid Operand) fault.
Note: it isnot possiblefor |A-32 codeto read aNaTVal from amemory location with an 1A-32
floating-point load instruction since a NatVal can not be expressed by a 80-bit double extended
precision number. It is highly recommended that floating-point values be passed on the
memory stack per typical 1A-32 calling conventions to avoid problems with NatVal and |A-64
denormals.

IA-32 Streaming SIMD Extension instructions that directly or indirectly consume a register

containing a NaTVal encoding, will ignore the NaTVal encoding and interpret the register’s

mantissa field as a legal data value.

IA-32 MM X technology instructions that directly or indirectly consume aregister containing a

NaTVal encoding, will ignore the NaTVal encoding and interpret the register’s mantissa field

as a legal data value.

Software should not rely on the behavior of NaT or NaTVal during IA-32 instruction execution, or
propagate NaT or NaTVal into IA-32 instructions.

JMPE—Jump to IA-64 Instruction Set

Opcode Instruction Description

OF 00 /6 JMPE r/m16 Jump to IA-64, indirect address specified by r/m16

OF 00 /6 JMPE r/m32 Jump to IA-64, indirect address specified by r/m32

OF B8 JMPE disp16 Jump to 1A-64, absolute address specified by addr16

OF B8 JMPE disp32 Jump to 1A-64, absolute address specified by addr32
Description

Thisinstruction is available only on 1A-64 processorsin the |A-64 System Environment.

JMPE switches the processor to the IA-64 instruction set and starts execution at the specified
target address There are two forms; an indirect form, r/mr16/32, and an unsigned absolute
form, disp16/32. Both 16 and 32-bit formats are supported.
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The absol ute form computes the 16-byte aligned 64-bit virtual target address in the |A-64
instruction set by adding the unsigned 16 or 32-bit displacement to the current CS base (IP{31:0} =
displ6/32 + CSD.base). Theindirect form specifiesthe virtual 1A-64 target address by the contents
of aregister or memory location (IP{31:0} = [r/m16/32] + CSD.base).

GR[1] isloaded with the next sequential instruction address following JMPE.

JMPE performs a FWAIT operation, any pending |A-32 unmasked floating-point exceptions are
reported as faults on the JMPE instruction.

JMPE does not perform amemory fence or serialization operation.
Successful execution of JMPE clears EFLAGf to zero.

If the |A-64 register stack engine is enabled for eager execution, the register stack engine may
immediately start loading registers when the processor enters the | A-64 instruction set.
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IA-64

Instruction Reference 4

7.1

Table 7-1.

Table 7-2.

This chapter describes the function of 1A-64 instructions. The pages of this chapter are sorted
alphabetically by assembly language mnemonic.

Instruction Page Conventions

The instruction pages are divided into multiple sections aslisted in Table 7-1. The first four sections are
present on al instruction pages. The last three sections are present only when necessary. Table 7-2 lists
the font conventions which are used by the instruction pages.

Instruction Page Description

Section Name Contents
Format Assembly language syntax, instruction type and encoding format
Description Instruction function in English
Operation Instruction function in C code
FP Exceptions IEEE floating-point traps

Instruction Page Font Conventions

Font Interpretation
regular (Format section) Required characters in an assembly language mnemonic
italic (Format section) Assembly language field name that must be filled with one of a range
of legal values listed in the Description section
code (Operation section) C code specifying instruction behavior
code italic (Operation section) Assembly language field name corresponding to a italic field listed

in the Format section

In the Format section, register addresses are specified using the assembly mnemonic field names givenin
the third column of Table 7-3. For instructions that are predicated, the Description section assumes that
the qualifying predicate istrue (except for instructions that modify architectural state when their
qualifying predicate isfalse). The test of the qualifying predicate isincluded in the Operation section
(when applicable).

In the Operation section, registers are addressed using the notation r eg[ addr] . fi el d. Theregister file
being accessed is specified by r eg, and has a value chosen from the second column of Table 7-3. The
addr field specifies aregister address as an assembly language field name or a register mnemonic. For
the general, floating-point, and predicate register files which undergo register renaming, adar isthe
register address prior to renaming and the renaming is not shown. Thef i el d option specifies anamed bit
field within theregister. If f i el d is absent, then all fields of the register are accessed. The only exception
iswhen referencing the data field of the general registers (64-bits not including the NaT bit) where the
notation GR addr] is used. The syntactical differences between the code found in the Operation section
and standard Cislisted in Table 7-4.
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Register File C Notation Qiiﬁ%&lﬁé Z‘géreescst
Application registers AR ar
Branch registers BR b
CPU identification registers CPUID cpuid Y
Floating-point registers FR f
General registers GR r
Performance monitor data registers PMD pmd Y
Predicate registers PR p
Table 7-4. C Syntax Differences
Syntax Function

{msb:Isb}, {bit}

Bit field specifier. When appended to a variable, denotes a bit field extending from the most
significant bit specified by “msb” to the least significant bit specified by “Isb” including bits “msb”
and “Isb”. If “msb” and “Isb” are equal then a single bit is accessed. The second form denotes a

single bit.

u>, U>=, U<, u<=

Unsigned inequality relations. Variables on either side of the operator are treated as unsigned.

u>>, u>>= Unsigned right shift. Zeroes are shifted into the most significant bit position.
u+ Unsigned addition. Operands are treated as unsigned, and zero-extended.
u*

Unsigned multiplication. Operands are treated as unsigned.

The remainder of this chapter provides a description of 1A-64 instruction.

Instruction Descriptions
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Format:

Description:

Operation:

(qp) add I’1= r2, I’3

(gp) add rq=rp,r3, 1
(gp) add rq=imm, r3
(gp) adds ry =immyy, r3
(gp) addl ry=immyy, rg

check_target_register(ry);

if (register_form

tnp_src = R rj;
else if (immd_form

tnp_src = sign_ext(inmmy, 14);
el se

tnp_src = sign_ext(immy, 22);

tmp_nat = (register_form? GRr,.nat :

if (plusl_form
GRrg] =tnp_src + GRrg] + 1
el se

&Rrg =tnmp_src + Grgl;
CRryj]l.nat = tnp_nat || GRrg.nat;
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0);

register_form

plusl form, register form
pseudo-op

imml14_form
imm22_form

The two source operands (and an optional constant 1) are added and the result placed in GR r;. In the
register form thefirst operand is GR ro; in theimm_14 form the first operand is taken from the sign
extended immy 4 encoding field; in the imm22_form the first operand is taken from the sign extended
immy, encoding field. In theimm22_form, GR r3 can specify only GRs 0, 1, 2 and 3.

The immediate-form pseudo-op chooses the imm14_form or imm22_form based upon the size of the
immediate operand and the valuein GRr.

if (PRgp]) {

Il register form
/1 14-bit imrediate form

[l 22-bit imrediate form

add

Al
Al

A4
A5

The plusl_form isavailable only in the register_form (although the equivalent effect in the immediate
forms can be achieved by adjusting the immediate).
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Add Pointer
Format: (gp) addp4 ry=ry, 13 register_form Al
(gp) addp4 rq=immyy, r3 imm14_form Ad

Description:  The two source operands are added. The upper 32 bits of the result are forced to zero, and then bits
{31:30} of GRr5 are copied to bits {62:61} of the result. Thisresult isplaced in GRr4. In the
register_form the first operand is GR r; in theimm14_form the first operand is taken from the sign
extended imm,, encoding field.

Figure 7-1. Add Pointer

32 0 32 30 0

GR r: 0 0
63 61 32 0

Operation: if (PRgp]) {
check_target _register(ry);

tmp_src = (register_form? CRr,] : sign_ext(immy, 14));
tmp_nat = (register_form? GRr,].nat : 0);

tmp_res = tnp_src + GRr3;

tnp_res = zero_ext(tnp_res{31:0}, 32);

tmp_res{62: 61} = GR rz] {31: 30};
CGRrg;] =tnp_res;
GRrgjl.nat =tnp_nat || GRrg].nat;
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alloc

Allocate Stack Frame

Format:

Description:

dloc ry=arpfs i, l, o, r M34

A new stack frameis allocated on the general register stack, and the Previous Function State register
(PFS) is copied to GR r4. The change of frame sizeisimmediate. The write of GR r4 and subsequent
instructions in the same instruction group use the new frame. This instruction cannot be predicated.

The four parameters, i (size of inputs), | (size of locals), o (size of outputs), and r (size of rotating) specify
the sizes of the regions of the stack frame.

Figure 7-2. Stack Frame

Operation:

GR32
Local Output
<—>‘ sof -
sol

The size of the frame (sof) isdetermined by i + | + 0. Note that thisinstruction may grow or shrink the size
of the current register stack frame. The size of the local region (sol) isgiven by i + 1. Thereisno real
distinction between inputs and locals. They are given as separate operands in the instruction only as a hint
to the assembler about how the local registers are to be used.

The rotating registers must fit within the stack frame and be amultiple of 8 in number. If thisinstruction
attempts to change the size of CFM.sor, and the register rename base registers (CFM.rrb.gr, CFM.rrb.fr,
CFM.rrb.pr) are not all zero, then the instruction will cause a Reserved Register/Field fault.

Although the assembler does not alow illegal combinations of operandsfor alloc, illegal combinations
can be encoded in theinstruction. Attempting to allocate a stack frame larger than 96 registers, or with the
rotating region larger than the stack frame, or with the size of localslarger than the stack frame, will cause
an lllegal Operation fault. An al | oc instruction must be the first instruction in an instruction group.
Otherwise, the results are undefined.

If insufficient registers are available to allocate the desired frame al | oc will stall the processor until
enough dirty registers are written to the backing store. Such mandatory RSE stores may cause the data
related faults listed below.

tnp_sof =i + [ + o
tmp_sol =i + [;
tnp_sor =r u>> 3;

check_target_register_sof (rgz, tnp_sof);
if (tnmp_sof u> 96 || r u> tnp_sof || tnp_sol u> tnp_sof)
illegal operation fault();
if (tnp_sor != CFM sor &&
(CFMrrb.gr '=0 || CFMrrb.fr =0 || CFMrrb.pr = 0))
reserved_register field fault();

al at _frane_update(0, tnp_sof - CFMsof);
rse_new frame(CFM sof, tnp_sof);// Make roomfor new regi sters; Mandatory RSE
/1 stores can raise faults |isted bel ow

CFM sof = tnp_sof;
CFM sol = tnp_sol ;
CFM sor = tnp_sor;
&R r;] = AR PFS];
&R rq .nat = 0;
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Logical And
Format: (gp) and ry=ry, 15 register_form Al
(gp) and ry =immg, ry imm8_form A3

Description:  Thetwo source operands arelogically ANDed and the result placed in GR r. Inthe register_form the first
operand is GR r; in theimm8_form the first operand is taken from the immg encoding field.

Operation: if (PRgp]) {
check_target _register(ry);

tmp_src = (register_form? CRr,] : sign_ext(img, 8));
t = (register_form? GR[r,.nat : 0);

GRrg =tnmp_src & GRrj;
GRrqjl.nat = tnp_nat || GRrg.nat;
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And Complement

Format: (gp) andem rq=r,, 13 register_form Al
(gp) andcm rq=immg, r3 imm8_form A3
Description:  The first source operand is logically ANDed with the 1’'s complement of the second source operand and
the result placed in GR. In the register_form the first operand is GRin the imm8_form the first
operand is taken from theimg encoding field.

Operation: if (PRgp]) {
check_target _register(ry);

tmp_src = (register_form? GRr, : sign_ext(imy, 8));
t = (register_form? GR[r,.nat : 0);

Rrg =tnp_src & ~Rrg;
GRrgjl.nat = tnp_nat || GRrg.nat;
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Branch

Format:

Description:

(gp) br.btype.bwh.ph.dh target,s ip_relative form Bl

(gp) br.btype.bwh.ph.dh b, = target,s cal_form, ip_relative_form B3
br.btype.bwh.ph.dh targetog counted form, ip_relative form B2
br.ph.dh target,s pseudo-op

(gp) br.btype.bwh.ph.dh b, indirect form B4

(gp) br.btype.bwh.ph.dh b; =b, call_form, indirect_form B5
br.ph.dh b, pseudo-op

A branch calculation is evaluated, and either a branch is taken, or execution continues with the next
sequential instruction. The execution of abranch logically follows the execution of all previous
non-branch instructions in the same instruction group. On a taken branch, execution begins at slot 0.

Branches can be either IP-relative, or indirect. For | P-relative branches, the target,s operand, in assembly,
specifies alabel to branch to. Thisis encoded in the branch instruction as a signed immediate
displacement (imm,4) between the target bundle and the bundle containing thisinstruction (immy, =
targetos — IP >> 4). For indirect branches, the target address is taken frdmp. BR

Table 7-5. Branch Types

7-8

btype Function Branch Condition Target Address

cond or none Conditional branch Qualifying predicate IP-rel or Indirect
call Conditional procedure call Qualifying predicate IP-rel or Indirect
ret Conditional procedure return Qualifying predicate Indirect

ia Invoke 1A-32 instruction set Unconditional Indirect

cloop Counted loop branch Loop count IP-rel

ctop, cexit Mod-scheduled counted loop Loop count and epilog count IP-rel

wtop, wexit Mod-scheduled while loop Qualifying predicate and epilog count IP-rel

There are two pseudo-ops for unconditional branches. These are encoded like a conditionditigpanch (
= cond), with thegp field specifying PR 0, and with thmsvh hint of sptk.

The branch type determines how the branch condition is calculated and whether the branch has other
effects (such as writing a link register). For the basic branch types, the branch condition is simply the
value of the specified predicate register. These basic branch types are:

¢ cond: If the qualifying predicate is 1, the branch is taken. Otherwise it is not taken.
¢ call: If the qualifying predicateis 1, the branch is taken and several other actions occur:

— The current values of the Current Frame Marker (CFM), the EC application register and the
current privilege level are saved in the Previous Function State application register.

— The caller’s stack frame is effectively saved and the callee is provided with a frame containing
only the caller’s output region.

— The rotation rename base registers in the CFM are reset to 0.
— Arreturn link value is placed in BR.
¢ return: If the qualifying predicateis 1, the branch is taken and the following occurs:

— CFM, EC, and the current privilege level are restored from PFS. (The privilege level is restored
only if this does not increase privilege.)

— The caller’s stack frame is restored.
— If the return lowers the privilege, and PSR.Ip is 1, then a Lower-privilege Transfer trap is taken.
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¢ ja: Thebranch istaken unconditionaly, if it is not intercepted by the OS. The effect of the branch is
toinvokethe IA-32 instruction set (by setting PSR.isto 1) and begin processing | A-32 instructions at
the virtual linear target address contained in BR by{ 31:0} . If the qualifying predicateis not PR O, an
Illegal Operation fault israised.

The |A-32 target effective addressis calculated relative to the current code segment, i.e. EIP{31:0} =

BR bx{31:0} — CSD.base. The IA-32 instruction set can be entered at any privilege level, provided
instruction set transitions are not disabled. No register bank switch nor change in privilege level
occurs during the instruction set transition.

Software must ensure the code segment descriptor (CSD) and selector (CS) are loaded before issuing
the branch. If the target EIP value exceeds the code segment limit or has a code segment privilege
violation, an IA-32_Exception(GPFault) is raised on the target IA-32 instruction. For entry into

16-bit IA-32 code, if BRo, is not within 64K-bytes of CSD.base a GPFault is raised on the target
instruction. EFLAG.rf is unmodified until the successful completion of the first IA-32 instruction.
EFLAG.if is not cleared until the target 1A-32 instruction successfully completes.

Software must issuerd instruction before the branch if memory ordering is required between |A-32
processor consistent and |1A-64 unordered memory references. The processor does not ensure
IA-64-instruction-set-generated writes into the instruction stream are seen by subsequent 1A-32
instruction fetchesr . i a does not perform an instruction serialization operafitve processor

does ensure that prior writes (even in the same instruction group) to GRs and FRs are observed by the
first IA-32 instruction. Writes to ARs within the same instruction groujr asa are not allowed,

sincebr . i a may implicitly reads all ARs. If an illegal RAW dependency is present between an AR
write andbr . i a, the first IA-32 instruction fetch and execution may or may not see the updated AR
value.

IA-32 instruction set execution leaves the contents of the ALAT undefined. Software can not rely on
ALAT values being preserved across an instruction set transition. On entry to IA-32 code, existing
entries in the ALAT are ignored. If the register stack contains any dirty registers, an lllegal Operation
fault is raised on ther . i a instruction. All registers left in the current register stack frame are left
undefined during 1A-32 instruction set execution. The current register stack frame is forced to zero.
To flush the register file of dirty registers, theushr s instruction must be issued in an instruction
group proceeding ther . i a i nstruction. To enhance the performance of the instruction set

transition, software can start the I1A-64 register stack flush in parallel with starting the 1A-32
instruction set by 1) ensuringushr s is exactly one instruction group before thei a, and 2)

br.iais in the first B-slotbr . i a should always be executed in the first B-slot with a hint of
“static-taken” (default), otherwise processor performance will be degraded.

Another branch typeis provided for simple counted loops. This branch type uses the Loop Count
application register (LC) to determine the branch condition, and does not use a qualifying predicate:

¢ cloop: If the LC register is not equal to zero, it is decremented and the branch is taken.

In addition to these simple branch types, there are four types which are used for accelerating

modul o-scheduled loops. Two of these are for counted loops (which use the L C register), and two for
while loops (which use the qualifying predicate). These loop types use register rotation to provide register
renaming, and they use predication to turn off instructions that correspond to empty pipeline stages.

The Epilog Count application register (EC) is used to count epilog stages and, for some while loops, a
portion of the prolog stages. In the epilog phase, EC is decremented each time around and, for most loops,
when EC is one, the pipeline has been drained, and the loop is exited. For certain types of optimized,
unrolled software-pipelined loops, the target of abr. cexit or br. wexit isset to the next sequential
bundle. In this case, the pipeline may not be fully drained when EC is one, and continues to drain while
EC iszero.

For these modul o-scheduled |oop types, the cal culation of whether the branch is taken or not depends on

the kernel branch condition (L C for counted types, and the qualifying predicate for while types) and on the
epilog condition (whether EC is greater than one or not).
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These branch types are of two categories: top and exit. The top types (ctop and wtop) are used when the
loop decision islocated at the bottom of the loop body and therefore ataken branch will continue the loop
while afall through branch will exit the loop. The exit types (cexit and wexit) are used when the loop
decision is|located somewhere other than the bottom of the loop and therefore afall though branch will
continue the loop and a taken branch will exit the loop. The exit types are also used at intermediate points
in an unrolled pipelined loop.

The modulo-scheduled |oop types are:

¢ ctop and cexit: These branch types behave identically, except in the determination of whether to
branch or not. For br . ct op, the branch is taken if either LC is non-zero or EC is greater than one.
For br. cexi t , the oppositeistrue. It isnot taken if either LC isnon-zero or EC is greater than one
and is taken otherwise.

These branch types also use LC and EC to control register rotation and predicate initialization.
During the prolog and kernel phase, when LC is non-zero, LC counts down. When br . ct op or

br. cexit isexecuted with LC equal to zero, the epilog phase is entered, and EC counts down. When
br.ctoporbr. cexit isexecuted with LC equal to zero and EC equal to one, afinal decrement of
EC and afinal register rotation are done. If LC and EC are equal to zero, register rotation stops.
These other effects are the same for the two branch types, and are described in Figure 7-3.

Figure 7-3. Operation of br.ctop and br.cexit

ctop, cexit
== 0 (epilog) (special
unrolled
=0 >1 =0 IOOpS)
(prolog /
kernel)

Y

LC-- | .c=tc | | c=1c | [ Lc=Lc |

y L] L]
EC = EC | Ec- | | Ec- | [ EC=EC |

v L] L] v
PR[63] = 1 | PR63]=0 | | PR63]=0 | [ PR[63]=0 |
L] v v L]
RRB-- | RRB- | | RRB- | [RRB=RRB]
- | | ]
ctop: branch V‘ ctop: fall-thru
cexit: fall-thru cexit: branch

wtop and wexit: These branch types behave identically, except in the determination of whether to
branch or not. For br . wt op, the branch istaken if either the qualifying predicateisoneor ECis
greater than one. For br . wexi t , the oppositeistrue. It is not taken if either the qualifying predicate
isone or EC is greater than one, and is taken otherwise.

These branch types a so use the qualifying predicate and EC to control register rotation and predicate
initialization. During the prolog phase, the qualifying predicate is either zero or one, depending upon
the scheme used to program the loop. During the kernel phase, the qualifying predicate is one.
During the epilog phase, the qualifying predicate is zero, and EC counts down. When br . wt op or
br. wexi t isexecuted with the qualifying predicate equal to zero and EC equal to one, afinal
decrement of EC and afinal register rotation are done. If the qualifying predicate and EC are zero,
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register rotation stops. These other effects are the same for the two branch types, and are described in
Figure 7-4.

Figure 7-4. Operation of br.wtop and br.wexit

wtop, wexit

==0 (prolog / epilog) (special
unrolled
loops)

>1

(prolog/ | ==1
kernel) (prolog /
epilog)
\

(epilog)
i L
| Eec- | [ Ec- | | EC=EC |
v v v
| PR[B;%]:O | PR[B;%]:O | PR[B;%]:O |

RRB-- | RRB- | | RRB- | |RRB=RRB]
B | | ]
wtop: branch v wtop: fall-thru ‘
wexit: fall-thru wexit: branch

The loop-type branches (br . ¢l oop, br. ct op, br. cexi t, br.w op, and br . wexi t) areonly allowed in
instruction slot 2 within abundle. Executing such an instruction in either slot 0 or 1 will cause an Illegal
Operation fault, whether the branch would have been taken or not.

Read after Write (RAW) and Write after Read (WAR) dependency requirements are slightly different for
branch instructions. Changes to BRs, PRs, and PFS by non-branch instructions are visible to a subsequent
branch instruction in the same instruction group (i.e., alimited RAW is allowed for these resources). This
allows for alow-latency compare-branch sequence, for example. The normal RAW requirements apply to
the LC and EC application registers, and the RRBs.

Within an instruction group, a WAR dependency on PR 63 is not allowed if both the reading and writing
instructions are branches. For example, abr . wt op or br . wexi t may not use PR[63] asits qualifying
predicate and PR[63] cannot be the qualifying predicate for any branch preceding abr . wt op or

br . wexi t in the same instruction group.

For dependency purposes, the loop-type branches effectively always write their associated resources,
whether they are taken or not. The cloop type effectively alwayswritesLC. When LC is 0, acloop branch
leaves it unchanged, but hardware may implement this as are-write of L C with the same value. Similarly,
br.ctopandbr. cexit effectively awayswrite LC, EC, the RRBs, and PR[63]. br . wt op and br . wexi t
effectively always write EC, the RRBs, and PR[63].

Values for various branch hint completers are shown in the following tables. Whether Prediction Strategy
hints are shown in Table 7-6. Sequential Prefetch hints are shown in Table 7-7. Branch Cache
Deadllocation hints are shown in Table 7-8.

Table 7-6. Branch Whether Hint

bwh Completer Branch Whether Hint

spnt Static Not-Taken

sptk Static Taken
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Table 7-6. Branch Whether Hint

bwh Completer

Branch Whether Hint

dpnt

Dynamic Not-Taken

dptk

Dynamic Taken

Table 7-7. Sequential Prefetch Hint

ph Completer

Sequential Prefetch Hint

few or none

Few lines

many

Many lines

Table 7-8. Branch Cache Deallocation Hint

dh Completer

Branch Cache Deallocation Hint

none

Don’t deallocate

clr Deallocate branch information

Operation: if (ip_relative_form
tmp_IP = IP + sign_ext((immp; << 4),
else // indirect_form

tnp_IP = BRI b ;

if (btype!=tia)
tmp_IP =tmp_IP & ~Oxf;

lower_priv_transition = 0;

switch (bt ype) {
case ‘cond’:
tmp_taken = PR[
break;

qpl;

case ‘call:
tmp_taken =PR[  gp];
if (tmp_taken) {
BR[b;] = IP + 16;

AR[PFS].pfm = CFM;
AR[PFS].pec = AR[EC];
AR[PFS].ppl = PSR.cpl;

alat_frame_update(CFM.sol, 0);
rse_preserve_frame(CFM.sol);
CFM.sof -= CFM.sol;
CFM.sol = 0;
CFM.sor = 0;
CFM.rrb.gr = 0;
CFM.rrb.fr=0;
CFM.rrb.pr =0;
}

break;

case ‘ret’:
tmp_taken = PR[
if (tmp_taken) {

qpl;

7-12

/1 determ ne branch target
25);

/l for IA-64 branches,

/I ignore bottom 4 bits of target

/I simple conditional branch

/I call saves a return link

/I ... and saves the stack frame

/I new frame size is size of outs

/I return restores stack frame
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// tnp_growth indicates the amount to nove |ogical TOP *up*:

/1 tnp_growth = sizeof (previous out) - sizeof(current frame)

// a negative anount indicates a shrinking stack

tnp_growth = (AR PFS].pfmsof - AR[PFS].pfmsol) - CFM sof;

al at _frane_updat e(- AR PFS] . pfmsol, 0);

rse_fatal = rse_restore_frane(AR PFS]. pfmsol, tnp_growh, CFM sof);
if (rse_fatal) {

CFM sof = 0;
CFM sol = 0;
CFM sor = O;
CFMrrb.gr = 0;
CFMrrb.fr = 0;
CFMrrb. pr = 0;

} else // nornal Branch return
CFM = AR] PFS] . pf m

rse_enabl e_current _frame_| oad();
AR EC] = AR PFS]. pec;
if (PSR cpl u< AR PFS].ppl) { /1 ... and restores privilege
PSR cpl = AR PFS]. ppl;
lower_priv_transition = 1;
}
}
br eak;

case ‘ia’: /I switch to IA mode
tmp_taken = 1;
if (gp = 0)
illegal_operation_fault();
if (AR[BSPSTORE] = AR[BSP])
illegal_operation_fault();
if (PSR.di)
disabled_instruction_set _transition_fault();
PSR.is=1; /I set IA-32 Instruction Set Mode
CFM.sof = 0; /[force current stack frame
CFM.sol = 0; [lto zero
CFM.sor =0;
CFM.rrb.gr =0;
CFM.rrb.fr = 0;
CFM.rrb.pr =0;
rse_invalidate_non_current_regs();

/I Note the register stack is disabled during 1A-32 instruction set execution
break;

case ‘cloop”: /I simple counted loop
if (slot 1= 2)
illegal_operation_fault();
tmp_taken = (AR[LC] != 0);
if (AR[LC] !=0)

AR[LC]--;
break;
case ‘ctop’:
case ‘cexit”: /I SW pipelined counted loop
if (slot 1= 2)

illegal_operation_fault();
if ( btype=="ctop’) tmp_taken = ((AR[LC]!=0) || (AR[EC] u> 1));
if (bt ype == ‘cexit')tmp_taken = ((AR[LC] != 0) || (AR[EC] u> 1));
if (AR[LC] '=0) {

AR[LC]-;

AR[EC] = AR[EC];
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PR 63] = 1;
rotate_regs();

} else if (AREQ !'=0) {

ARLG = ARL];
AR[EC] - -;
PR 63] = O;
rotate_regs();
} else {
AR[LC = ARLC;
ARLEC = AREC;
PR 63] = 0;
CFMrrb.gr = CFMrrb. gr;
CFMrrb.fr = CFMrrb.fr;
CFMrrb.pr = CFMrrb. pr;
}
br eak;
case ‘wtop’”:
case ‘wexit’:
if (slot I= 2)

illegal_operation_fault();
if ( btype=="'wtop’) tmp_taken = (PR][
if (bt ype =="wexit)tmp_taken = |(PR[
if (PR gp]) {

AR[EC] = AR[EC];

PR[63] = 0;

rotate_regs();
} else if (AR[EC] = 0) {

AR[EC]--;

PR[63] = 0;

rotate_regs();
}else {

AR[EC] = AR[EC];

PR[63] = 0;

CFM.rrb.gr = CFM.rrb.gr;

CFM.rrb.fr = CFM.rrb.fr;

CFM.rrb.pr = CFM.rrb.pr;
}

break;

}

if (tmp_taken) {
taken_branch =1,
IP =tmp_IP;

/I SW pipelined while loop

gp] || (AR[EC] u> 1));
ap] || (AR[EC] u> 1));

// set the new value for IP

if (PSR.it && unimplemented_virtual_address(tmp_IP))
[| (PSR.it && unimplemented_physical_address(tmp_IP)))
unimplemented_instruction_address_trap(lower_priv_transition,tmp_IP);

if (lower_priv_transition && PSR.Ip)
lower_privilege_transfer_trap();
if (PSR.tb)
taken_branch_trap();
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Break

Format:

Description:

Operation:

(gp) bresk immy, pseudo-op
(gp) break.i immy, i_unit_form
(gp) break.b immy, b_unit form
(gp) break.m immy m_unit_form
(gp) break.f immyy f_unit_form
(gp) break.x immg, X_unit_form

break

119
B9
M37
F15
X1

A Break Instruction fault istaken. For thei_unit_form, f_unit_form and m_unit_form, the value specified

by imm,, is zero-extended and placed in the Interruption Immediate control register (11M).

For the b_unit_form, imm,, isignored and the value zero is placed in the Interruption Immediate control

register (11M).

For the x_unit_form, the lower 21 bits of the value specified by immg, is zero-extended and placed in the

Interruption Immediate control register (1IM). The L dot of the bundle contains the upper 41 bits of

immgp.

Thisinstruction has five forms, each of which can be executed only on a particular execution unit type.

The pseudo-op can be used if the unit type to execute on is unimportant.

it (PRgp]) {
if (b_unit_form
i mredi ate = 0;
else if (x_unit_form
imedi ate = zero_ext (i mry, 21);
else // i_unit_form|| munit _form|| f_unit_form
i mredi ate = zero_ext (imm; 21);

break_instruction_faul t(i nmedi ate);
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Speculation Check

Format: (gp) chk.s r,, targetog pseudo-op
(gp) chk.si ro, target,s control_form, i_unit_form, gr_form 120
(gp) chk.sm r,, target,s control_form, m_unit_form, gr_form M20
(gp) chk.s f,, targetyg control_form, fr_form M21
(gp) chk.aaclr rq, targetys data form, gr_form M22
(gp) chk.a.aclr fq, target,s data form, fr_form M23

Description:  The result of acontrol- or data-speculative calculation is checked for success or failure. If the check fails,
abranch to target,s is taken.

In the control _form, success is determined by a NaT indication for the source register. If the NaT bit
corresponding to GRr, is 1 (inthe gr_form), or FR f, containsaNaTVal (in the fr_form), the check fails.

In the data_form, success is determined by the ALAT. The ALAT is queried using the general register
specifier rq (in the gr_form), or the floating-point register specifier f; (in the fr_form). If no ALAT entry
matches, the check fails. An implementation may optionally cause the check to fail independent of
whether an ALAT entry matches.

The target,5 operand, in assembly, specifies alabel to branch to. Thisis encoded in theinstruction as a
signed immediate displacement (immy;) between the target bundle and the bundle containing this
instruction (immy; = targetys — 1P >> 4).

The control_form of this instruction for checking general registers can be encoded on either an I-unit or an
M-unit. The pseudo-op can be used if the unit type to execute on is unimportant.

For the data_form, if an ALAT entry matches, the matching ALAT entry can be optionally invalidated,
based on the value of tlaelr completer (Se&able 7-9.

Table 7-9. ALAT Clear Completer

aclr Completer Effect on ALAT
clr Invalidate matching ALAT entry
nc Don't invalidate

Note that if theclr value of theaclr completer is used and the check succeeds, the matching ALAT entry is
invalidated. However, if the check fails (which may happen even if there is a matching ALAT entry), any
matching ALAT entry may optionally be invalidated, but this is not required. Recovery code for data
speculation, therefore, cannot rely on the absence of a matching ALAT entry.
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Operation: if (PREgp]) {

if (control_forn ({

if (fr_form&& (tnp_isrcode = fp_reg_disabled(f, 0, 0, 0)))
di sabled fp register_fault(tnp_isrcode, 0);

check_type = gr_form ? CHKS _GENERAL : CHKS_FLQAT;
fail = (gr_formé&x GRro].nat) || (fr_form&& FR f,] == NATVAL);

} else { // data_form
reg_type = gr_form? GENERAL : FLQAT;
alat_index = gr_form? r; : (data_form? f;: f));

check_type = gr_form? CHKA GENERAL : CHKA FLQAT;
fail = lalat_cnp(reg_type, alat_index);

}
if (fail) {
taken_branch = 1;
IP = 1P + sign_ext((inmmp; << 4), 25);
if ((PSRit && uninpl emented_virtual _address(IP))
|| (!'PSRit && uninplenmented_physical _address(I1P)))
uni npl enented_i nstructi on_address_trap(0, IP);
if (PSR th)
taken_branch_trap();

}
if (!fail & data_form && (aclr =="‘clr))
alat_inval_single_entry(reg_type, alat_index);
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Clear RRB

Format: clrrrb al form B8
clrrrb.pr pred_form B8

Description:  Intheall_form, the register rename base registers (CFM.rrb.gr, CFM.rrb.fr, and CFM.rrb.pr) are cleared.
In the pred_form, the single register rename base register for the predicates (CFM.rrb.pr) is cleared.

Thisinstruction must be the last instruction in an instruction group, or an Illegal Operation fault is taken.

This instruction cannot be predicated.

Operation: if ('followed_by stop())
illegal operation fault();
if (all_form {
CFMrrb.gr = 0;
CFMrrb.fr = 0;
CFMrrb.pr = 0;
} else { // pred_form

CFMrrb.pr = 0
}
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Compare

Format:

Description:

cmp
(gp) cmp.crel.ctype py, P, =rp, I3 register_form A6
(gp) cmp.crel.ctype py, p, =immg, r3 imm8_form A8
(ap) cmp.crel.ctype pq, p, =10, 3 parallel_inequality form A7
(gp) cmp.crel.ctype pq, pp=r3, 10 pseudo-op
The two source operands are compared for one of ten relations specified by crel. This produces a boolean

result which is 1 if the comparison condition istrue, and O otherwise. This result is written to the two
predicate register destinations, p; and p,. The way the result iswritten to the destinations is determined by
the compare type specified by ctype.

The compare types describe how the predicate targets are updated based on the result of the comparison.
The normal type simply writes the compare result to one target, and the complement to the other. The
parallel types update the targets only for a particular comparison result. This allows multiple simultaneous
OR-type or multiple simultaneous AND-type compares to target the same predicate register.

The unc type is special in that it first initializes both predicate targets to 0, independent of the qualifying
predicate. It then operates the same as the normal type. The behavior of the compare typesis described in
Table 7-10. A blank entry indicates the predicate target is left unchanged.

Table 7-10. Comparison Types

PR[gp]==1
ctype Pseudo-op PRIqp]==0 result==0, result==1, One or More
of No Source NaTs No Source NaTs Source NaTs
PRIpj | PRIpz | PRIp4 PR[pZ] PR[p; | PR[pza | PRIpi | PRIpZ
none 0 1 1 0 0 0
unc 0 0 0 1 1 0 0 0
or 1 1
and 0 0 0 0
or.andcm 1 0
orcm or 1 1
andcm and 0 0 0 0
and.orcm | or.andcm 0 1

Intheregister_form the first operand is GR r,; in theimm8_form the first operand is taken from the sign
extended immg encoding field; and in the parallel_inequality_form the first operand must be GR 0. The
parallel_inequality_form is only used when the compare typeis one of the parallel types, and the relation
isan inequality (>, >=, <, <=). See below.

If the two predicate register destinations are the same (p; and p, specify the same predicate register), the
instruction will take an Illegal Operation fault, if the qualifying predicate is set, or if the compare typeis
unc.

Of the ten relations, not all are directly implemented in hardware. Some are actually pseudo-ops. For
these, the assembler simply switches the source operand specifiers and/or switches the predicate target
specifiers and uses an implemented relation. For some of the pseudo-op comparesin theimm8_form, the
assembler subtracts 1 from the immediate value, making the allowed immediate range slightly different.
Of the six parallel compare types, three of the types are actually pseudo-ops. The assembler simply uses
the negative relation with an implemented type. The implemented relations and how the pseudo-ops map
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onto them are shown in Table 7-11 (for normal and unc type compares), and Table 7-12 (for parallel type
compares).

Table 7-11. 64-bit Comparison Relations for Normal and unc Compares

crel Compare Relation Register Form is a Immediate Form is a Immediate Range
(arel b) Pseudo-op of Pseudo-op of 9

eq a==b -128 .. 127

ne |al=b eq PL - P |eq Py~ Py |-128.. 127

It a<b signed -128 .. 127

le a<=b It aob Propy [t al -127 .. 128

gt a>b t aob It al pPg- Py |-127.128

ge a>=b It PPy |t P - P |-128..127

Itu a<b unsigned 0..127, 254128 .. 2641

leu |a<=b tu aob Ppops |Itu al 1..128, 2%4.127 . 254

gu |a>b tu aob Itu al Pgo Py |1.128, 254127 264

geu |a>=b Itu Pp - Py |ltu Py - Pp | 0. 127, 254128 . 2641

The parallel compare types can be used only with arestricted set of relations and operands. They can be
used with equal and not-equal comparisons between two registers or between aregister and an immediate,
or they can be used with inequality comparisons between aregister and GR 0. Unsigned relations are not
provided, since they are not of much use when one of the operandsis zero. For the parallel inequality
comparisons, hardware only directly implements the ones where the first operand (GR r,) isGR 0.
Comparisons where the second operand is GR 0 are pseudo-ops for which the assembler switches the
register specifiers and uses the opposite rel ation.

Table 7-12. 64-bit Comparison Relations for Parallel Compares

crel Compare Relation Register Form is a Immediate Range
(arel b) Pseudo-op of
eq a==b -128 .. 127
ne a=b -128 .. 127
It o<b signed no immediate forms
It a<o gt ao-b
le 0<=b
le a<=0 ge aob
gt o>b
gt a>o0 It ao-b
ge 0>=b
ge a>=0 le aob
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cmp
Operation: if (PRLgp]) {
it (p1 == p2)
illegal operation fault();
tmp_nat = (register_form? GRr ].nat R rg . nat;
if (register_forn
tnp_src = R rjl;
else if (im8_form
trmp_src = sign_ext(/immg, 8);
else // parallel _inequality form
tnp_src = 0;
if (crel =='eq’) tmp_rel =tmp_src == GR[ rsl;
else if ( crel =='ne’) tmp_rel =tmp_src = GR[ rsl;
else if ( crel =='It) tmp_rel =lesser_signed(tmp_src, GR[ r3);
else if ( crel =='le") tmp_rel = lesser_equal_signed(tmp_src, GR[ r3l);
else if ( crel =='gt') tmp_rel = greater_signed(tmp_src, GR[ r3l);
else if crel =='ge’) tmp_rel = greater_equal_signed(tmp_src, GR[ r3l);
else if ( crel =='ltu’) tmp_rel = lesser(tmp_src, GR[ r3l);
else if ( crel =='lew’) tmp_rel =lesser_equal(tmp_src, GR[ r3l);
else if ( crel =='gtu’) tmp_rel = greater(tmp_src, GR[ r3);
else tmp_rel = greater_equal(tmp_src, GR[ r3l); /Il 'geu’
switch ( ctype){
case ‘and’: /I and-type compare
if (tmp_nat || 'tmp_rel) {
PR[p4] =0;
PR[p2] = 0;
break;
case ‘or’: /I or-type compare
if ('tmp_nat && tmp_rel) {
PR[p;]=1;
PR[pz] = 1;
break;
case ‘or.andcm’: I/ or.andcm-type compare
if (tmp_nat && tmp_rel) {
PR[p;] =1,
) PR[p2] = 0;
break;
case ‘unc’ /I unc-type compare
default: /l normal compare
if (tmp_nat) {
PR[p;] = 0;
PR[p2] =0;
}else{
PR[p;] =tmp_rel;
PR[pJ] = tmp_rel;
break;
}else {
if (  ctype==‘unc){
if( pl== p2)
illegal_operation_fault();
PR[p4] =0;
PR[p2] =0;
}
IA-64 Application Developer’s Architecture Guide, Rev. 1.0 7-21



cmp4 Inte| ®

Compare Word

Format: (gp) cmpd.crel.ctype pq, po =15, I3 register_form A6
(gp) cmpd4.crel.ctype pq, po =immg, ra imm8_form A8
(gp) cmp4.crel.ctype pq, po =10, r3 paralel_inequality form A7
(gp) cmp4.crel.ctype pq, pp =r3, 10 pseudo-op

Description:  The least significant 32 bits from each of two source operands are compared for one of ten relations

specified by crel. This produces a boolean result which is 1 if the comparison condition istrue, and O
otherwise. Thisresult is written to the two predicate register destinations, p; and p,. The way the result is
written to the destinations is determined by the compare type specified by ctype. See the Compare
instruction and Table 7-10 on page 7-19.

In theregister_form the first operand is GR r,; in the imm8_form the first operand is taken from the sign
extended immg encoding field; and in the parallel_inequality_form the first operand must be GR 0. The
paralel_inequality form isonly used when the compare type is one of the parallel types, and the relation
isan inequality (>, >=, <, <=). See the Compare instruction and Table 7-12 on page 7-20.

If the two predicate register destinations are the same (p; and p, specify the same predicate register), the
instruction will take an Illegal Operation fault, if the qualifying predicate is set, or if the compare typeis
unc.

Of the ten relations, not al are directly implemented in hardware. Some are actually pseudo-ops. See the
Compareinstruction and Table 7-11 and Table 7-12 on page 7-20. Therange for immediatesis given
below.

Table 7-13. Immediate Range for 32-bit Compares

Operation:

7-22

crel Com{zgrreele)lation Immediate Range

eq a==b -128 .. 127

ne a=b -128 .. 127

It a<b signed -128 .. 127

le a<=b -127 .. 128

gt a>b -127 .. 128

ge a>=b -128 .. 127

Itu a<b unsigned 0..127, 2%2.128 .. 2%21
leu a<=b 1..128, 2%2.127 .. 2%2
gtu a>b 1. 128, 282.127 .. 2%2
geu a>=b 0..127, 2%2.128 .. 2821

if (PRap]) {
if (p1 == p2)

illegal operation fault();
tmp_nat = (register_form? GRry.nat : 0) || GRrj].nat;

if (register_form
tnp_src = GRrjl;
else if (im8 form
tnp_src = sign_ext(imy, 8);
else // parallel_inequality_form
tnp_src = 0;
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if (crel =='eq) tmp_rel =tmp_src{31:0} == GR][
else if ( crel =='ne’) tmp_rel = tmp_src{31:0} I= GR[
else if crel =='It)

tmp_rel = lesser_signed(sign_ext(tmp_src, 32), sign_ext(GR][
else if ( crel =='le")

tmp_rel = lesser_equal_signed(sign_ext(tmp_src, 32),

else if ( crel ==gt)
tmp_rel = greater_signed(sign_ext(tmp_src, 32), sign_ext(GR[
else if ( crel =='ge’)
tmp_rel = greater_equal_signed(sign_ext(tmp_src,
else if ( crel =="ltv)
tmp_rel = lesser(zero_ext(tmp_src, 32), zero_ext(GR[
else if ( crel =='lew)

tmp_rel = lesser_equal(zero_ext(tmp_src, 32), zero_ext(GR[
else if ( crel =='gtu)

tmp_rel = greater(zero_ext(tmp_src, 32), zero_ext(GR[
else /I 'geu’

tmp_rel = greater_equal(zero_ext(tmp_src, 32), zero_ext(GR[

switch ( ctype) {
case ‘and”:
if (tmp_nat || 'tmp_rel) {
PR[p;] =0;
PR[p2] = 0;
break;
case ‘or’:
if ('tmp_nat && tmp_rel) {
PR[p;] = 1;
) PR[p2] = 1;
break;

case ‘or.andcm’:
if ('tmp_nat && tmp_rel) {

PR[ps]=1;
PR[p2] = 0;
break;
case ‘unc’:
default:
if (tmp_nat) {
PR[p;]=0;
PR[pz] = 0;
}else {

PR[p4] =tmp_rel;
PR[pJ] = tmp_rel;

}else {

break;
}
if (  ctype==‘unc’){
if( pl== p2
illegal_operation_fault();
PR[p;] = 0;
PR[pz] = 0;
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r 51{31:0};
r #{31:0};
r3l, 32));
sign_ext(GR[  r 3], 32));

r 3l 32));
32), sign_ext(GR[ r3], 32));
r3l, 32));
r3l, 32));
r 3, 32));
r3l, 32));

/I and-type compare

/I or-type compare

I/ or.andcm-type compare

/I unc-type compare
// normal compare
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Compare And Exchange
Format: (gp) cmpxchgsz.sem.dhint rq = [rg], r,, ar.ccv M16

Description: A value consisting of sz bytesisread from memory starting at the address specified by the valuein GR r3.
The valueis zero extended and compared with the contents of the cnpxchg Compare Value application
register (AR[CCV]). If the two are equal, then the least significant sz bytes of the valuein GR r, are
written to memory starting at the address specified by the value in GR r5. The zero-extended value read
from memory is placed in GR r; and the NaT bit corresponding to GR r4 is cleared.

The values of the szcompleter are givenin Table 7-14. The sem compl eter specifies the type of semaphore
operation. These operations are described in Table 7-15 "Compare and Exchange Semaphore Types'.

Table 7-14. Memory Compare and Exchange Size

sz Completer Bytes Accessed

1 1
2 2
4 4
8 8

Table 7-15. Compare and Exchange Semaphore Types

sem Ordering .
Completer Semantics Semaphore Operation
acq Acquire The memory read/write is made visible prior to all subsequent data memory
accesses.
rel Release The memory read/write is made visible after all previous data memory accesses.

If the address specified by the valuein GR r3 is not naturally aligned to the size of the value being
accessed in memory, an Unaligned Data Reference fault i s taken independent of the state of the User Mask
alignment checking hit, UM.ac (PSR.ac in the Processor Status Register).

The memory read and write are guaranteed to be atomic.

Both read and write access privileges for the referenced page are required. The write access privilege
check is performed whether or not the memory write is performed.

The value of the Idhint compl eter specifies the locality of the memory access. The values of the Idhint
completer are given in Table 7-28 on page 7-105. Locality hints do not affect program functionality and

may be ignored by the implementation. See “Memory Hierarchy Control and Consistency” on page 4-20
for details.
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Operation:

it (PR gp]) {

check_target_register(r;, SEMAPHORE);

if (Rrg.nat || GRrj.nat)

regi ster_nat _consunpti on_f aul t ( SEVAPHORE) ;

cmpxchg

paddr = tlb_translate(GRr3, sz, SEMAPHORE, PSR cpl, &mattr, & np_unused);

if (!ma_supports_senmaphores(mattr))

unsupported_data_reference_faul t (SEVAPHORE, GR r3]);

if (sem==‘acq){

val = mem_xchg_cond(AR[CCV], GR[ r 5], paddr,
| dhi nt);
Yelse {// ‘rel
val = mem_xchg_cond(AR[CCV], GR[ r 5], paddr,
| dhi nt);
val = zero_ext(val, sz *8);
if (AR[CCV] == val)
alat_inval_multiple_entries(paddr, 52);

GR([r 4] = val
GR[r 7].nat = 0;
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Compute Zero Index

Format:

Description:

(gp) czx1.l ry=r3
(gp) czx1l.r ry=rj
(ap) czx2l ry=r3
(gp) czx2.r ry=rs

GR r3 isscanned for a zero element. The element is either an 8-bit aligned byte (one_byte form) or a
16-bit aligned pair of bytes (two_byte form). The index of the first zero element isplaced in GRr. If
there are no zero elements in GR r3, adefault valueis placed in GR ;. "1° gives the possible resuit

one_byte form, left_form
one_byte form, right_form
two_byte form, left_form
two_byte form, right_form

129
129
129
129

values. Inthe left_form, the source is scanned from most significant element to least significant element,
and in theright_form it is scanned from least significant element to most significant element.

Table 7-16. Result Ranges for czx

Operation:

7-26

Size Element Width Range of Result if Zero Element Default Result if No Zero Element
Found Found
8 bit 0-7 8
16 bit 0-3 4
if (PR gp]) {

check_target _register(ry);

if (one_byte form {

if (left_form { /1 scan fromnost significant down
if ((GR r3] & Oxff00000000000000) == 0) GR(r ] = 0;
elseif ((GRrg & 0x00ff000000000000) == 0) GRr;] = 1;
else if ((GRrg & 0x0000ff0000000000) == 0) CRr;] = 2;
elseif ((GRrz & 0x000000ff00000000) == 0) GRr4] = 3;
elseif ((GRrg & 0x00000000ff000000) == 0) CRr; ] = 4;
elseif ((GRrz & 0x0000000000ff0000) == 0) G r4 = 5;
elseif ((GRrzg & 0x000000000000ff00) == 0) GRr;] = 6;
else if ((GRrg & 0x00000000000000ff) == 0) CGRrq =7,
else Rrq = 8;

} else { // right_form scan fromleast significant up
if ((GR r3] & 0x00000000000000ff) == 0) GRr ] = 0;
elseif ((GRrg & 0x000000000000ff00) == 0) CRry = 1;
else if ((GRrgz & 0x0000000000ff0000) == 0) CGRrq = 2;
elseif ((GRrgz & 0x00000000ff000000) == 0) GRr;] = 3;
elseif ((GRrg & 0x000000ff00000000) == 0) CRr; = 4;
elseif ((GRrz & 0x0000ff0O000000000) == 0) GRr4] = 5;
elseif ((GRrg & 0x00ff000000000000) == 0) CRr;] = 6;
else if ((GRrz & Oxff00000000000000) == 0) CGRr4] = 7;
else Rrq = 8;

}

} else { /] two_byte form

if (left_form ({ /1 scan fromnost significant down
if ((GR r3] & Oxffff000000000000) == 0) GR[r ] = 0;
else if ((GRrg & 0x0000ffff00000000) == 0) CRry = 1;
else if ((GRrg & 0x00000000ffff0000) == 0) CGRrq = 2;
elseif ((GRrgzg & 0x000000000000ffff) == 0) GRr; = 3;
else (Rrq = 4

} else { /] right_form scan fromleast significant up
if ((GR r3] & 0x000000000000ffff) == 0) GR{r;] = 0;
elseif ((GRrz & 0x00000000ffff0000) == 0) GRr4 = 1;
else if ((GRrg & 0x0000ffff00000000) == 0) GRr;] = 2;
else if ((GRrs & Oxffff000000000000) == 0) GRrq = 3;
else Rrq = 4

13R[rﬂ.nat = CRrg.nat;
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Deposit

Format:

Description:

dep
(ap) dep rq=ry, 13, posg, len, merge_form, register_form 115
(gp) dep rq =immy, r3, posg, leng merge_form, imm_form 114
(gp) dep.z ry =r,, posg, leng zero_form, register_form 112
(qp) dep.z ry =immg, poss, leng zero_form, imm_form 113

Inthe merge_form, aright justified bit field taken from the first source operand is deposited into the value
in GRr3 at an arbitrary bit position and the result is placed in GR ry. In the register_form the first source

operand iSGR r,; and in theimm_form it is the sign-extended value specified by imm; (either all ones or
all zeroes). The deposited bit field begins at the bit position specified by the posg immediate and extends

to the left (towards the most significant bit) a number of bits specified by thelen immediate. Note that len
hasarange of 1-16 intheregister_form and 1-64 in theimm_form. The posg immediate has arange of 0 to
63.

Inthezero_form, aright justified bit field taken from either the valuein GRr, (inthe register_form) or the
sign extended value in immg (in theimm_form) is deposited into GR r; and al other bitsin GR r4 are
cleared to zero. The deposited bit field begins at the bit position specified by the posg immediate and
extends to the left (towards the most significant bit) a number of bits specified by thelen immediate. The
len immediate has arange of 1-64 and the posg immediate has a range of 0 to 63.

In the event that the deposited bit field extends beyond bit 63 of the target, i.e., len + posg > 64, the most
significant len + posg — 64 bits of the deposited bit field are truncated. [Ehémmediate is encoded as
len minus 1 in the instruction.

The operation ofiep t = s, r, 36, 16 isillustrated inFigure 7-5

Figure 7-5. Deposit Example

52 36 0 16 0
GR: GR s:

v

52 36 0

GR t:
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Operation: if (PRgp]) {
check_target _register(ry);

if (immforn {

tmp_src = (merge_form? sign_ext(imm,1) : sign_ext(imy, 8));
tmp_nat = merge_form? GRlrs].nat : O;
tmp_len = leng ;
} else { Il register_form
tnp_src = R rj;
tmp_nat = (merge_form? GRr3.nat : 0) || GRrg.nat;
tmp_len = merge_form? len, : leng ;

}
if (posg + tnp_len u> 64)
tmp_len = 64 - posg;

if (merge_forn

Rrg = Rrgl;
else // zero form
X =0

R ril{(posg + tmp_len - 1): posgt = tnp_src{(tnp_len - 1):0};
CGRr ] .nat = tnp_nat;
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Extract

Format:

Description:

extr
(gp) extr rq =r3, posg, leng signed_form 111
(gp) extr.u rq =rg, posg, leng unsigned form 111

A field isextracted from GR r 3, either zero extended or sign extended, and placed right-justified in GR r.
Thefield begins at the bit position given by the second operand and extends leng bits to the |eft. The bit
position where the field begins is specified by the posg immediate. The extracted field is sign extended in
the signed_form or zero extended in the unsigned_form. The sign is taken from the most significant bit of
the extracted field. If the specified field extends beyond the most significant bit of GR r3, the signistaken
from the most significant bit of GR r3. The immediate value leng can be any number in the range 1 to 64,
and is encoded as leng-1 in the instruction. The immediate value posg can be any valuein the range O to
63.

The operationof extr t =r, 7, 50 isillustrated in Figure 7-6.

Figure 7-6. Extract Example

Operation:

63 56 7 0
GR:
GRt: sign
63 49 0
if (PREgp]) {

check_target_register(ry);
tmp_len = [eng

if (posg + tnp_len u> 64)
tmp_len = 64 - posg;

i f (unsigned_form

R rg] = zero_ext(shift_right_unsigned(GRr3], pos6), tnp_len);
else // signed_form

R rg] = sign_ext(shift_right_unsigned(GRr3], pos6), tnp_len);

CRrg].nat = GR[rg.nat;
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Floating-Point Absolute Value
Format: (gp) fabs f; =15 pseudo-op of: (gp) fmerge.s f; =10, f5
Description:  The absolute value of the valuein FR f5 is computed and placed in FR f;.

If FRfzisaNaTVal, FRf; is set to NaTVal instead of the computed result.

Operation: See “Floating-Point Merge” on page 7-50
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Floating-Point Add

Format: (gp) fadd.pc.sf f; =13, fo pseudo-op of: (gp) fmapc.sf f; =1, 1,1,

Description:  FR f3 and FR f, are added (computed to infinite precision), rounded to the precision indicated by pc (and
possibly FPSR.sf.pc and FPSR.sf.wre) using the rounding mode specified by FPSR.sf.rc, and placed in FR
f,. If either FRfz or FRf,isaNaTVal, FRf; is set to NaTVal instead of the computed result.
The mnemonic values for the opcodpeésare given infable 7-17 The mnemonic values faf are given

in Table 7-18 For the encodings and interpretation of the status fiptdare, andrc, refer toTable 5-5
andTable 5-6 on page 5:-7

Table 7-17. Specified pc Mnemonic Values

pc Mnemonic Precision Specifed
.S single
d double
none dynamic

(i.e., use pc value in status field)

Table 7-18. sf Mnemonic Values

sfMnemonic Status Field Accessed
.S0 or none sf0
sl sfl
2 sf2
.S3 sf3
Operation: See “Floating-Point Multiply Add” on page 7-48
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Floating-Point Absolute Maximum
Format: (gp) famax.sf f; =1y, f3 F8

Description:  The operand with the larger absolute value is placed in FR f;. If the magnitude of FR f, equals the
magnitude of FR f3, FR f; gets FR f5.

If either FRf, or FR fzisaNaN, FR f; gets FR fs.
If either FR f, or FR fzisaNaTVal, FR f; is set to NaTVal instead of the computed result.

This operation does not propagate NaNs the same way as other floating-point arithmetic operations. The
Invalid Operation is signaled in the same manner as the fcmp.It operation.

The mnemonic values for sf are given in Table 7-18 on page 7-31.

Operation: if (PRI gp]) {
fp_check_target_register(f;);
if (tnp_isrcode = fp_reg_disabled(f; f, f3 0))
di sabl ed_fp_register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRIf]) || fp_is_natval (FRf3)) {
FR[ f;] = NATVAL;
} else {
fm nmax_exception_faul t_check(f, f3 sf, &np_fp_env);
if (fp_raise_fault(tnp_fp_env))
fp_exception_fault(fp_decode fault(tnp_fp_env));

trmp_right = fp_reg_read(FR f;]);

tmp_left = fp_reg_read(FR f3]);

tnp_right.sign = FP_SI GN_PCsSI Tl VE;

trp_left.sign = FP_SI GN_POSI Tl VE;

tnp_bool _res = fp_less than(tnp_left, tnmp_right);
FRIf;] = tnp_bool res ? FRIf, : FR f3];

fp_update fpsr(sf, tnp_fp_env);
}

fp_update_psr(f,);
}

FP Exceptions: Invalid Operation (V)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault
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Floating-Point Absolute Minimum
Format: (gp) famin.sf f; =15, f3 F8

Description:  The operand with the smaller absolute valueis placed in FR f;. If the magnitude of FR f, equals the
magnitude of FR f3, FR f; gets FR f5.

If either FRf, or FR fzisaNaN, FR f; gets FR fs.
If either FR f, or FR fzisaNaTVal, FR f; is set to NaTVal instead of the computed result.

This operation does not propagate NaNs the same way as other floating-point arithmetic operations. The
Invalid Operation is signaled in the same manner as the fcmp.It operation.

The mnemonic values for sf are given in Table 7-18 on page 7-31.

Operation: if (PRI gp]) {
fp_check_target_register(f;);
if (tnp_isrcode = fp_reg_disabled(f; f, f3 0))
di sabl ed_fp_register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRIf]) || fp_is_natval (FRf3)) {
FR[ f;] = NATVAL;
} else {
fm nmax_exception_faul t_check(f, f3 sf, &np_fp_env);
if (fp_raise_fault(tnp_fp_env))
fp_exception_fault(fp_decode fault(tnp_fp_env));

tmp_left = fp_reg_read(FR f,]);

tmp_right = fp_reg_read(FR f3]);

tnp_left.sign = FP_SI GN_PGCsl Tl VE;

trp_right.sign = FP_SI GN_PCSI Tl VE;

tnp_bool _res = fp_less than(tnp_left, tnmp_right);
FRIf;] = tnp_bool res ? FRIf, : FR f3];

fp_update fpsr(sf, tnp_fp_env);
}

fp_update_psr(f,);

FP Exceptions: Invalid Operation (V)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault
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Floating-Point Logical And

Format:

Description:

Operation:

(ap) fand fy=f,, 3 Fo

The bit-wise logical AND of the significand fields of FR f, and FR f5 is computed. The resulting valueis
stored in the significand field of FR f;. The exponent field of FR f; is set to the biased exponent for 2.0%3
(Ox1003E) and the sign field of FR f; is set to positive (0).

If either FR f, or FR fzisaNaTVal, FR f; is set to NaTVal instead of the computed result.

if (PRIgp]) {
fp_check_target_register(f;);
if (tnp_isrcode = fp_reg_disabled(f;, fo f3z 0))
di sabled fp register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRf;]) || fp_is_natval (FR f3)) {
FR{ f;] = NATVAL;
} else {
FR( f4].significand = FR{ f,].significand & FR f3].significand;
FR f ;] . exponent = FP_| NTEGER EXP;
FR f;].sign = FP_SI GN _POSI Tl VE

}
fp_update_psr(f,);

FP Exceptions: None
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Floating-Point And Complement
Format: (gp) fandcm fq =1, f3 Fo

Description: ~ The bit-wise logical AND of the significand field of FR f, with the bit-wise complemented significand
field of FR f3is computed. The resulting valueis stored in the significand field of FR f;. The exponent
field of FR f; is set to the biased exponent for 2.0%3 (Ox1003E) and the sign field of FR f; is set to positive

().
If either FR f, or FRf,isaNaTVal, FR f; is set to NaTVal instead of the computed result.

Operation: if (PR gp]) {
fp_check_target_register(f;);
if (tnp_isrcode = fp_reg_disabled(f; fo f3 0))
di sabled fp register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRIf5]) || fp_is_natval (FRf3])) {
FR ;] = NATVAL;
} else {
FRIf4].significand = FR{f,].significand & ~FR f3].significand;
FR f ;] . exponent = FP_| NTEGER EXP;
FR[ f].sign = FP_SI GN_PCSI Tl VE;

}
fp_update_psr(fy);

FP Exceptions: None
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Flush Cache
Format: (gp) fc rj M28
Description:  The cache line associated with the address specified by the value of GRr3 isinvalidated from all levels of
the processor cache hierarchy. Theinvalidation is broadcast throughout the coherence domain. If, at any
level of the cache hierarchy, the line isinconsistent with memory it iswritten to memory before
invalidation.
Theline size affected is at |east 32-bytes (aligned on a 32-byte boundary). An implementation may flush a
larger region.
This instruction follows data dependency rules; it is ordered with respect to preceding and following
memory references to the sameline. f ¢ has data dependencies in the sense that any prior stores by this
processor will be included in the data written back to memory. f ¢ is an unordered operation, and is not
affected by a memory fence (nf ) instruction. It is ordered with respect to the sync. i instruction.
Operation: if (PRI gp]) {
i type = NON_ACCESS| FQ READ
if (&R rg.nat)
regi ster_nat _consunption_fault(itype);
trp_paddr = tlb_transl ate_nonaccess(GR[r3], itype);
mem f | ush(t np_paddr);
}
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Floating-Point Check Flags
Format: (gp) fchkf.sf target,s F14

Description:  The flagsin FPSR.<f.flags are compared with FPSR.s0.flags and FPSR.traps. If any flags set in
FPSR.sf.flags correspond to FPSR.traps which are enabled, or if any flags set in FPSR.sf.flags are not set
in FPSR.s0.flags, then a branch to target,s is taken.

The target,s operand, specifies alabel to branch to. Thisisencoded in the instruction as a signed
immediate displacement (immy4) between the target bundle and the bundle containing this instruction
(immy, = target,s — IP >> 4).

The mnemonic values faf are given infable 7-18 on page 7-31

Operation: if (PR gp]) {
switch (sf) {

case ‘sO"
tmp_flags = AR[FPSR].sf0.flags;
break;

case ‘sl"
tmp_flags = AR[FPSR].sf1.flags;
break;

case ‘s2"
tmp_flags = AR[FPSR].sf2.flags;
break;

case ‘s3"
tmp_flags = AR[FPSR].sf3.flags;
break;

}
if ((tmp_flags & ~AR[FPSR].traps) || (tmp_flags & ~AR[FPSR].sf0.flags)) {
if (check_branch_implemented(FCHKF)) {
taken_branch = 1;
IP = IP + sign_ext(( i mmpy << 4), 25);
if (PSR.it && unimplemented_virtual_address(IP))
|| ({PSR.it && unimplemented_physical_address(IP)))
unimplemented_instruction_address_trap(0, IP);
if (PSR.tb)
taken_branch_trap();
}else
speculation_fault(FCHKF, zero_ext( i mmpy, 21));

}

FP Exceptions: None
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Floating-Point Class

Format: (ap)

Description:

fclass.ferel.fetype py, py =1, felassg F5

The contents of FR f, are classified according to the fclassq completer as shown in Table 7-20. This

produces a boolean result based on whether the contents of FR f, agrees with the floating-point number
format specified by fclassg, as specified by the fcrel completer. This result iswritten to the two predicate
register destinations, p; and p,. The result written to the destinations is determined by the compare type
specified by fctype.

The allowed types are Normal (or none) and unc. See Table 7-21 on page 7-41. The assembly syntax
allows the specification of membership or non-membership and the assembler swaps the target predicates
to achieve the desired effect.

Table 7-19. Floating-point Class Relations

ferel Test Relation
m FR fz agrees with the pattern specified by fClaS'Sg (is a member)
nm FR f2 does not agree with the pattern specified by fClassg (is not a member)

A number agrees with the pattern specified by fclassg if:

the number is NaTVal and fclassq {8} is 1, or
the number isaquiet NaN and fclassq{ 7} is1, or
the number isasignaling NaN and fclassq { 6} is 1, or

the sign of the number agrees with the sign specified by one of the two low-order bits of fclassg, and
the type of the number (disregarding the sign) agrees with the number-type specified by the next 4
bits of fclassg, as shown in Table 7-20.

Note: An fclassg of Ox1FF is equivalent to testing for any supported operand.

The class names used in Table 7-20 are defined in Table 5-2 on page 5-3.

Table 7-20. Floating-point Classes

fclassg Class Mnemonic
Either these cases can be tested for
0x0100 NaTVal @nat
0x080 Quiet NaN @gnan
0x040 Signaling NaN @shan
or the OR of the following two cases
0x001 Positive @pos
0x002 Negative @neg
AND’ed with OR of the following 4 cases
0x004 Zero @zero
0x008 Unnormalized @unorm
0x010 Normalized @norm
0x020 Infinity @inf
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Operation:

fclass

if (PREap]) {
it (p1 == p2)
illegal operation fault();

if (tnp_isrcode = fp_reg_disabled(f, 0, 0, 0))
di sabled fp register_fault(tnp_isrcode, 0);

tmp_rel = ((fclassg{0} && 'FR{f;].sign || fclassg{1} && FR[fj] . sign)

&% ((fclassg{2} && fp_is_zero(FRfJ]))]||
(fclassg{3} && fp_is_unorm(FRf;])) ||
(fclassg{4} && fp_is_normal (FRIf;)) |
(fclassg5} && fp_is_inf(FRf,]))
)

)

fclassg{6} &% fp_is_snan(FR[f5]))

[ (
|| (fclass{7} && fp_is_qgnan(FR{f;]))
|| (fclassg{8} && fp_is_natval (FR[f]));

tmp_nat = fp_is_natval (FRIf,]) &% (!fclassy8});

if (tnp_nat) ({
PR ps] = 0;
PR ps = 0;
} else {
PRI p;] = tnp_rel;
PRIp = !tnp_rel;
} else {
if (fctype=="'unc’){
if( pl== p2)
illegal_operation_fault();
PR[p4] =0;
PR[p2] = 0;

}

FP Exceptions: None
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Floating-Point Clear Flags
Format: (gp) fclrf.sf F13

Description:  The status field’s 6-bit flags field is reset to zero.
The mnemonic values faf are given inTable 7-18 on page 7-31

Operation: if (PR gp]) {
fp_set_sf_flags(sf, 0);
}

FP Exceptions: None
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femp

Floating-Point Compare

Format:

Description:

(gp) femp.frel.fctypest py, p, =15, f3 F4

The two source operands are compared for one of twelve relations specified by frel. This produces a
boolean result which is 1 if the comparison condition istrue, and O otherwise. Thisresult iswritten to the
two predicate register destinations, p; and p,. The way the result is written to the destinations is
determined by the compare type specified by fctype. The allowed types are Normal (or none) and unc.

Table 7-21. Floating-point Comparison Types

PR[gp]==1
fetype PRIgp]==0 result==0, result==1, One or More
No Source NaTVals No Source NaTVals Source NaTVals
PR[p4] PR[p PR[p] PR[pZ] PR[p4] PR[pZ] PR[p4] PR[p
none 0 1 1 0 0 0
unc 0 0 0 1 1 0 0 0

The mnemonic values for sf are given in Table 7-18 on page 7-31.

The relations are defined for each of the comparison typesin Table 7-22. Of the twelve relations, not all
are directly implemented in hardware. Some are actually pseudo-ops. For these, the assembler simply
switches the source operand specifiers and/or switches the predicate target specifiers and uses an
implemented relation.

Table 7-22. Floating-point Comparison Relations

f frel Completer . ) Quiet NaN
rel Unabbreviated Relation Pseudo-op of as Operand
Signals Invalid

eq equal fo==13 No

It less than fo<fs Yes

le less than or equal fo<="13 Yes

gt greater than fo> 13 It fr o f3 Yes

ge greater than or equal fy>=13 le fy  f3 Yes
unord | unordered fr 213 No

neq not equal I(fy ==1y) eq P1 - P2 No

nit not less than I(fy < fy) It P1 - P2 Yes

nle not less than or equal I(fy <=13) le P1 - P2 Yes

ngt not greater than i(fo > fg) It foefs pProps Yes
nge not greater than or equal I(fy >=1f3) le fobofs pPrepo Yes

ord ordered i(fy 2 f) unord P1 - P2 No
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Operation: if (PRLgp]) {
if (p1 == p2)
illegal operation fault();

if (tnp_isrcode = fp_reg_disabled(f, f3 0, 0))
di sabled fp register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRIf;]) || fp_is_natval (FRf3)) {

PR p;] = 0;
PRI ps = 0;
} else {

fcnp_exception_fault_check(f, f3 frel, sf, &np_fp_env);
if (fp_raise_fault(tnp_fp_env))
fp_exception_fault(fp_decode_fault(tnp_fp_env));

tmp_fr2 = fp_reg_read(FR f,]);

tmp_fr3 = fp_reg_read(FR f3]);

if (frel =='eq) tmp_rel= fp_equal (tnmp_fr2, tnmp fr3);

else if ( frel =="1It') tmp_rel =fp_less_than( tp_fr2, tnp_fr3);

else if ( frel =='le") tmp_rel =fp_lesser_or_equal( tnp_fr2, tnmp_fr3);
else if ( frel =='gt) tmp_rel=fp_less_than( tmp_fr3, tnp_fr2);

else if ( frel =='ge’) tmp_rel =fp_lesser_or_equal( tmp_fr3, tnp_fr2);
else if ( frel ==‘unord)tmp_rel = fp_unordered( tnp_fr2, tnp_fr3);

else if frel =='neq) tmp_rel =" fp_equal (tnp_fr2, tnp fr3);

else if ( frel =="nlt') tmp_rel =!fp_less_than( tp_fr2, tnp_fr3);

else if ( frel =='nle’) tmp_rel = !fp_lesser_or_equal( tnp_fr2, tnmp_fr3);
else if frel =='ngt) tmp_rel =fp_less_than( tnp_fr3, tnp_fr2);

else if ( frel =='nge’) tmp_rel = !fp_lesser_or_equal( tmp_fr3, tnp_fr2);
else tmp_rel = fp_unordered( tnp_fr2, tnp_fr3);//ord

PR[p;] =tmp_rel;
PR[pJ] = tmp_rel;

fp_update _fpsr(sf, tnp_fp_env);

}else{
if ( fctype=="'unc’){
if( pl== p2)
illegal_operation_fault();
PR[p4] =0;
PR[p2] = 0;
}
}

FP Exceptions: Invalid Operation (V)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault
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Convert Floating-Point to Integer

Format: (gp) fevt.fx.sf f; =1, signed_form F10
(gp) fevt.fx.trunc.sf f; =1, signed_form, trunc_form F10
(gp) fevt.fxusf fi =", unsigned form F10
(gp) fevt.fxu.trunc.sf fy =", unsigned form, trunc_form F10

Description:  FRf, istreated as aregister format floating-point value and converted to asigned (signed_form) or
unsigned integer (unsigned_form) using either the rounding mode specified in the FPSR.sf.rc, or using
Round-to-Zero if the trunc_form of the instruction is used. The result is placed in the 64-bit significand
field of FR f;. The exponent field of FR f; is set to the biased exponent for 2.0%2 (0x1003E) and the sign
field of FR f; is set to positive (0).

If FRf,isaNaTVal, FRf; is set to NaTVal instead of the computed result.
The mnemonic values for sf are given in Table 7-18 on page 7-31.

Operation: if (PRI gp]) {
fp_check_target_register(fy);
if (tnp_isrcode = fp_reg_disabled(f;, f, 0, 0))
di sabl ed_fp_register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRf5])) {
FR[ f;] = NATVAL;
fp_update_psr(fy);
} else {
trmp_defaul t _result = fcvt_exception_fault_check(f, sf,
signed_form trunc_form & np_fp_env);
if (fp_raise_fault(tnp_fp_env))
fp_exception_fault(fp_decode_fault(tnp_fp_env));

if (fp_is_nan(tnp_default_result)) {
FR f;].significand = | NTEGER | NDEFI NI TE;
FR[ f ;] . exponent = FP_| NTEGER_EXP;
FR{ f4].sign = FP_SI GN_POSI Tl VE
} else {
tnmp_res = fp_ieee_rnd_to_int(fp_reg_read(FR f;]), & np_fp_env);
if (tnp_res. exponent)
trp_res.significand = fp_UB4_rsh(
trp_res.significand, (FP_INTEGER EXP - tnp_res.exponent));
if (signed_form & tnp_res. sign)
trp_res.significand = (~tnp_res.significand) + 1,

FR{f4].significand = tnp_res.significand;
FR f ;] . exponent = FP_| NTEGER EXP;
FR{ f4].sign = FP_SI G\ _PCSI Tl VE;

}

fp_update_fpsr(sf, tnp_fp_env);

fp_update_psr(f,);

if (fp_raise_traps(tnp_fp_env))
fp_exception_trap(fp_decode_trap(tnp_fp_env));

}

FP Exceptions: Invalid Operation (V) Inexact (1)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault
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Convert Signed Integer to Floating-point
Format: (gp) fevtxf =", F11

Description:  The 64-hit significand of FR f, is treated as a signed integer and its register file precision floating-point
representation is placed in FR f;.

If FRf,isaNaTVal, FRf; is set to NaTVal instead of the computed result.
This operation is always exact and is unaffected by the rounding mode.

Operation: if (PRI gp]) {
fp_check_target_register(fy);
if (tnp_isrcode = fp_reg_disabled(f;, f, 0, 0))
di sabl ed_fp_register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRf5])) {
FR[ f;] = NATVAL;
} else {
tmp_res = FR{f,];
if (tnp_res.significand{63}) {
tnp_res.significand = (~tnp_res.significand) + 1,
tnp_res.sign = 1;
} else
tnp_res.sign = 0;

tnp_res. exponent = FP_| NTEGER_EXP;
tmp_res = fp_normalize(tnp_res);

FRf;].significand = tnp_res. significand;
FR[ f ;] . exponent = tnp_res. exponent;
FR{f4].sign = tnp_res. sign;

}
fp_update_psr(fy);
}

FP Exceptions: None
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Convert Unsigned Integer to Floating-point
Format: (gp) fevt.xuf.pc.sf f; =13 (unsigned form) pseudo-op of: (qp) fmapc.sf f; = fs, f1, fO

Description:  FR fzis multiplied with FR 1, rounded to the precision indicated by pc (and possibly FPSR.sf.pc and
FPSR.sf.wre) using the rounding mode specified by FPSR.sf.rc, and placed in FR f;.

Note:  Multiplying FR f3 with FR 1 (a 1.0) normalizes the canonical representation of an integer in the
floating-point register file producing a normal floating-point value.

If FRfyisaNaTVal, FRf; is set to NaTVal instead of the computed result.

The mnemonic values for the opcodgtsare given infable 7-17 on page 7-3The mnemonic values for
sf are given iffable 7-18 on page 7-3For the encodings and interpretation of the status fiptd'sre,
andrc, refer toTable 5-5andTable 5-6 on page 5:7

Operation: See “Floating-Point Multiply Add” on page 7-48

IA-64 Application Developer’s Architecture Guide, Rev. 1.0 7-45



fetchadd

intel.

Fetch And Add Immediate

Format:

Description:

(gp) fetchadd4.sem.dhint rq = [r3], inc3 four_byte form M17
(gp) fetchadd8.sem.Idhint rq = [r3], inc3 eight_byte form M17

A vaue consisting of four or eight bytesis read from memory starting at the address specified by the value
in GRr3. Thevalue is zero extended and added to the sign-extended immediate value specified by incs.
The values that may be specified by inc; are: -16, -8, -4, -1, 1, 4, 8, 16. Theleast significant four or eight
bytes of the sum are then written to memory starting at the address specified by the valuein GRr5. The
zero-extended value read from memory is placed in GR rq and the NaT bit corresponding to GRr 4 is
cleared.

The sem completer specifies the type of semaphore operation. These operations are described in
Table 7-23.

Table 7-23. Fetch and Add Semaphore Types

Operation:

7-46

sem Ordering .
Completer Semantics Semaphore Operation
acq Acquire The memory read/write is made visible prior to all subsequent data memory
accesses.
rel Release The memory read/write is made visible after all previous data memory
accesses.

The memory read and write are guaranteed to be atomic.

If the address specified by the value in GRr3 is not naturally aligned to the size of the value being
accessed in memory, an Unaligned Data Reference fault i s taken independent of the state of the User Mask
alignment checking bit, UM.ac (PSR.ac in the Processor Status Register).

Both read and write access privileges for the referenced page are required. The write access privilege
check is performed whether or not the memory write is performed.

The value of the [dhint completer specifies the locality of the memory access. The values of theldhint
completer are given in Table 7-28 on page 7-105. Locality hints do not affect program functionality and
may beignored by the implementation.

if (PRLgpl) { _
check_target_register(r;, SEMAPHORE);

if (R rg.nat)
regi ster_nat _consunpti on_f aul t ( SEVAPHORE) ;

size = four_byte form? 4 : 8;
paddr = tlb_translate(GR r3, size, SEVMAPHORE, PSR cpl, &mattr, & np_unused);
if (!'ma_supports _fetchadd(nmattr))

unsupported_data_r ef erence_faul t (SEMAPHORE, CRrg]);

if (sem=='acq)

val = mem_xchg_add( i ncgs, paddr, size, UM.be, mattr, ACQUIRE, | dhi nt);
else // ‘rel
val = mem_xchg_add( 7 ncgz, paddr, size, UM.be, mattr, RELEASE, | dhi nt);

alat_inval_multiple_entries(paddr, size);

GR{r ;] = zero_ext(val, size * 8);
GR[r 4].nat = 0;
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Flush Register Stack
Format: flushrs M25

Description:  All stacked general registersin the dirty partition of the register stack are written to the backing store
before execution continues. The dirty partition contains registers from previous procedure frames that
have not yet been saved to the backing store.

After thisinstruction completes execution AR[BSPSTORE] is equal to AR[BSP].

Thisinstruction must be the first instruction in an instruction group. Otherwise, the results are undefined.
This instruction cannot be predicated.

Operation: whil e (AR[BSPSTORE] != AR[BSP]) {

rse_st or e( MVANDATCRY) ; /1 increments AR BSPSTORE]
del i ver _unmasked_pendi ng_external _interrupt();
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Floating-Point Multiply Add

Format:

Description:

Operation:

(gp) fmapc.sf f; =13, T4, o F1

The product of FR f3 and FR f4 is computed to infinite precision and then FR f, is added to this product,
again in infinite precision. The resulting value is then rounded to the precision indicated by pc (and
possibly FPSR.sf.pc and FPSR.sf.wre) using the rounding mode specified by FPSR.sf.rc. The rounded
result is placed in FR f;.

If any of FR f53, FR f4, or FR f, isaNaTVal, FR f; is set to NaTVal instead of the computed result.

If f, isf0, an I[EEE multiply operation is performed instead of a multiply and add. See “Floating-Point
Multiply” on page 7-55

The mnemonic values for the opcodeacsare given iriTable 7-17 on page 7-3The mnemonic values for
sf are given inTable 7-18 on page 7-3For the encodings and interpretation of the status fiptgiare,
andrc, refer toTable 5-5andTable 5-6 on page 5:7

it (PRgp]) {
fp_check_target_register(f;);
if (tnp_isrcode = fp_reg_disabled(f;, f, f3 fyg)
di sabl ed_fp_register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRIf;]) || fp_is_natval (FR f3]) || fp_is_natval (FR[f,)) {
FR{ f;] = NATVAL;
fp_update_psr(f,);
} else {
trp_default _result = fma_exception_fault_check(f, fz fgu
pc, sf, & np_fp_env);
if (fp_raise_fault(tnp_fp_env))
fp_exception_fault(fp_decode_fault(tnp_fp_env));

if (fp_is_nan_or_inf(tnp_default_result)) {
FRf{ = tnp_default_result;
} else {
tmp_res = fp_nul (fp_reg_read(FR f3]), fp_reg_read(FR f,));
if (fo21=0)
tmp_res = fp_add(tnp_res, fp_reg_read(FR f,]), tnmp_fp_env);
FRIf;] = fp_ieee_round(tnp_res, & np_fp_env);

fp_update_f psr(sf, tnp_fp_env);

fp_update_psr(f);

if (fp_raise_traps(tnp_fp_env))
fp_exception_trap(fp_decode_trap(tnp_fp_env));

}

FP Exceptions: Invalid Operation (V) Overflow (O)
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Denormal/Unnormal Operand (D) Inexact (I)
Software Assist (SWA) fault Software Assist (SWA) trap
Underflow (U)
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Floating-Point Maximum

Format:

Description:

Operation:

FP Exceptions:

(ap) fmax.sf fy =1y, 5 F8
The operand with the larger valueis placed in FR f;. If FR f, equals FR 3, FR f; gets FR f5.

If either FRf, or FR fzisaNaN, FR f; gets FR fs.

If either FR f, or FR fzisaNaTVal, FR f; is set to NaTVal instead of the computed result.

This operation does not propagate NaNs the same way as other floating-point arithmetic operations. The
Invalid Operation is signaled in the same manner as the fcmp.It operation.

The mnemonic values for sf are given in Table 7-18 on page 7-31.

it (PRgp]) {
fp_check_target_register(fy);
if (tnp_isrcode = fp_reg_disabled(f; fo f3 0))
di sabl ed_fp_register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRIf5]) || fp_is_natval (FRf3])) {
FR[ f;] = NATVAL;
} else {
fm nmax_exception_faul t_check(f, f3 sf, &np_fp_env);
if (fp_raise_fault(tnp_fp_env))
fp_exception_fault(fp_decode_fault(tnp_fp_env));

trp_bool _res = fp_less_than(fp_reg_read(FR f3]), fp_reg_read(FR7,]));
FRIf{ = (tnp_bool _res ? FRIf; : FR f3);

fp_update_fpsr(sf, tnp_fp_env);

}
fp_update_psr(f,);
}

Invalid Operation (V)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault
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Floating-Point Merge

Format:

Description:

(gp) fmerge.ns fy =15, f5 neg_sign form Fo
(gp) fmergess f =1, f3 sign_form Fo
(gp) fmerge.se f; =f,, f3 sign_exp_form Fo

Sign, exponent and significand fields are extracted from FR f, and FR f, combined, and the result is
placed in FR f;.

For the neg_sign_form, the sign of FR f, is negated and concatenated with the exponent and the
significand of FR f5. This form can be used to negate a floating-point number by using the same register
for FRf, and FR f3.

For the sign_form, the sign of FR f, is concatenated with the exponent and the significand of FR f5.

For the sign_exp_form, the sign and exponent of FR f, is concatenated with the significand of FR fs.

For al forms, if either FR f, or FR fzisaNaTVal, FR f; is set to NaTVal instead of the computed result.

Figure 7-7. Floating-point Merge Negative Sign Operation

8180 6463 0 8180 64 63 0
FRf, FR f

negated 8180 64 63 e

signbit  FRf; ’

Figure 7-8. Floating-point Merge Sign Operation

8180 6463 0 8180 6463 0
FRf, FR f3

8180 6463 Ao/

FR T, ’

Figure 7-9. Floating-point Merge Sign and Exponent Operation
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8180 6463 0 8180 6463 0
FR 1, FR fy

180 6463 40/

FR f, |
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Operation:

}

fmerge

if (PRIgp]) {
fp_check_target_register(f;);
if (tnp_isrcode = fp_reg_disabled(f; fo f3 0))
di sabled fp register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRIf5]) || fp_is_natval (FRf3)) {
FR{ f;] = NATVAL;
} else {
FR{f4].significand = FR f3] . significand;
if (neg_sign_fornm {
FR f ;] . exponent = FR[ f 3] . exponent;
FRIf4.sign = IFR[fj] .sign;
} else if (sign_form {
FR f ;] . exponent = FR[ f 3] . exponent;
FRIf4].sign = FR f,]. sign;
} else {
FR f ;] . exponent = FR[ f,].exponent;
FRIf4].sign = FR f,]. sign;

/1 sign_exp_form

}
fp_update_psr(fy);

FP Exceptions: None
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Floating-Point Minimum
Format: (gp) fmin.sf f; =15, f3 F8
Description:  The operand with the smaller valueis placed in FR f. If FR f, equals FR f3, FR f; gets FR f5.

If either FRf, or FR fzisaNaN, FR f; gets FR f3.

If either FR f, or FR fzisaNaTVal, FR f; is set to NaTVal instead of the computed result.

This operation does not propagate NaNs the same way as other floating-point arithmetic operations. The
Invalid Operation is signaled in the same manner as the fcmp.It operation.

The mnemonic values for sf are given in Table 7-18 on page 7-31.

Operation: if (PRI gp]) {
fp_check_target_register(fy);
if (tnp_isrcode = fp_reg_disabled(f; fo f3 0))
di sabl ed_fp_register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRIf5]) || fp_is_natval (FRf3])) {
FR[ f;] = NATVAL;
} else {
fm nmax_exception_faul t_check(f, f3 sf, &np_fp_env);
if (fp_raise_fault(tnp_fp_env))
fp_exception_fault(fp_decode_fault(tnp_fp_env));

tmp_bool _res = fp_less_than(fp_reg_read(FR f,]), fp_reg_read(FR f3));
FRfq = tnp_bool _res ? FRIf5 : FR f3;

fp_update_fpsr(sf, tnp_fp_env);

}
fp_update_psr(f,);
}

FP Exceptions: Invalid Operation (V)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault
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Floating-Point Parallel Mix

Format: (gp) fmix.I f; =15, f3 mix_|_form Fo
(gp) fmix.r f; =1, f3 mix_r_form Fo
(gp) fmix.Ir fy =15, f5 mix_Ir_form Fo

Description:  For the mix_I_form (mix_r_form), the left (right) single precision value in FR f, is concatenated with the

left (right) single precision value in FR fa. For the mix_Ir_form, the left single precision valuein FR f, is
concatenated with the right single precision valuein FR f5.

For all forms, the exponent field of FR f; is set to the biased exponent for 2.0 (0x1003E) and the sign
field of FR f; is set to positive (0).

For al forms, if either FR f, or FR fzisaNaTVal, FR f; is set to NaTVal instead of the computed result.

Figure 7-10. Floating-point Mix Left

Figure 7-11. Floating-point Mix Right

Figure 7-12. Floating-point Mix Left-Right
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Operation: if (PREgp]) {
fp_check_target_register(f;);
if (tnp_isrcode = fp_reg_disabled(f; fo f3 0))
di sabled fp register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRIf5]) || fp_is_natval (FRf3])) {
FR ;] = NATVAL;

} else {

if (mx__form {
tmp_res_hi = FR f,].significand{63:32};
tmp_res_lo = FR f3].significand{63:32};

} elseif (mx_r _fornm {
tmp_res_hi = FR f,]. significand{31:0};
tmp_res_lo = FR f3]. significand{31:0};

} else { Il mx_Ir_form
tmp_res_hi = FR f,].significand{63:32};
tmp_res_lo = FR f3]. significand{31:0};

FR{f;].significand = fp_concatenate(tnp_res_hi, tnp_res_|lo);
FR f ;] . exponent = FP_| NTEGER EXP;
FR{ f4].sign = FP_SI GN_POSI Tl VE

}

fp_update_psr(f,);

FP Exceptions: None
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Floating-Point Multiply

Format: (gp) fmpy.pc.sf f; =13, fy pseudo-op of: (gp) fmapc.sf f; =1z, f, O

Description:  The product FR f3 and FR f, is computed to infinite precision. The resulting value is then rounded to the
precision indicated by pc (and possibly FPSR.sf.pc and FPSR.sf.wre) using the rounding mode specified
by FPSR.sf.rc. The rounded result is placed in FR f;.
If either FR f3 or FR fyisaNaTVal, FR f; is set to NaTVal instead of the computed result.
The mnemonic values for the opcodptsare given infable 7-17 on page 7-3The mnemonic values for
sf are given iffable 7-18 on page 7-3For the encodings and interpretation of the status fiptdare,
andrc, refer toTable 5-5andTable 5-6 on page 5:7

Operation: See “Floating-Point Multiply Add” on page 7-48
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Floating-Point Multiply Subtract

Format: (gp) fmspc.sf f; =13, Ty, o F1
Description:  The product of FR f3 and FR f4 is computed to infinite precision and then FR f, is subtracted from this
product, again in infinite precision. The resulting value is then rounded to the precision indicated by pc
(and possibly FPSR.sf.pc and FPSR.sf.wre) using the rounding mode specified by FPSR.sf.rc. The
rounded result is placed in FR f;.
If any of FR f3, FR f, or FRf, isaNaTVal, aNaTVa is placed in FR f; instead of the computed result.
If f, isf0, an IEEE multiply operation is performed instead of a multiply and subtract.
The mnemonic values for the opcodacsare given infable 7-17 on page 7-3The mnemonic values for
f are given inTable 7-18 on page 7-3For the encodings and interpretation of the status fiptgiare,
andrc, refer toTable 5-5andTable 5-6 on page 5-7
Operation: if (PRI gp]) {
fp_check_target_register(f;);
if (tnp_isrcode = fp_reg_disabled(f;, f, f3 fyg))
di sabl ed_fp_register_fault(tnp_isrcode, 0);
if (fp_is_natval (FRIf]) || fp_is_natval (FR f3]) || fp_is_natval (FR[f4)) {
FRf;] = NATVAL;
fp_update_psr(f,);
} else {
trp_defaul t _result = fns_fnma_exception_fault_check(f, f3 fyg
pc, sf, & np_fp_env);
if (fp_raise fault(tnp_fp_env))
fp_exception_fault(fp_decode_fault(tnp_fp_env));
if (fp_is_nan_or_inf(tnp_default result)) {
FRIf;] = tnp_default_result;
} else {
tmp_res = fp_nul (fp_reg_read(FR f3]), fp_reg_read(FR f4));
tmp_fr2 = fp_reg_read(FR f,]);
tnp_fr2.sign = !tnp_fr2. sign;
if (f,1=0)
tnp_res = fp_add(tnp_res, tnp_fr2, tnp_fp_env);
FRIf;] = fp_ieee_round(tnp_res, & np_fp_env);
}
fp_update fpsr(sf, tnp_fp_env);
fp_update_psr(fy);
if (fp_raise_traps(tnp_fp_env))
fp_exception_trap(fp_decode trap(tnp_fp_env));
}
}
FP Exceptions: Invalid Operation (V) Overflow (O)
Denormal/Unnormal Operand (D) Inexact (1)
Software Assist (SWA) fault Software Assist (SWA) trap
Underflow (U)
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Floating-Point Negate
Format: (gp) fneg f; =13 pseudo-op of: (qp) fmerge.ns f; =13, f3
Description:  Thevaluein FR f3 is negated and placed in FR f;.

If FRfzisaNaTVal, FRf; is set to NaTVal instead of the computed result.

Operation: See “Floating-Point Merge” on page 7-50
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Floating-Point Negate Absolute Value
Format: (gp) fnegabs f; =f3 pseudo-op of: (gp) fmerge.ns f; =10, f5
Description:  The absolute value of the valuein FR f5 is computed, negated, and placed in FR f;.

If FRfzisaNaTVal, FRf; is set to NaTVal instead of the computed result.

Operation: See “Floating-Point Merge” on page 7-50
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Floating-Point Negative Multiply Add
Format: (gp) fnmapc.sf f; =13, T4, T F1

Description:  The product of FR f3 and FR f4 is computed to infinite precision, negated, and then FR f, is added to this
product, again in infinite precision. The resulting value is then rounded to the precision indicated by pc
(and possibly FPSR.sf.pc and FPSR.sf.wre) using the rounding mode specified by FPSR.sf.rc. The
rounded result is placed in FR f;.

If any of FR f3, FR f4, or FR f, isaNaTVal, FR f; is set to NaTVal instead of the computed result.
If f, isf0, an IEEE multiply operation is performed, followed by negation of the product.

The mnemonic values for the opcodacsare given infable 7-17 on page 7-3The mnemonic values for
f are given inTable 7-18 on page 7-3For the encodings and interpretation of the status fiptgiare,
andrc, refer toTable 5-5andTable 5-6 on page 5-7

Operation: if (PRI gp]) {
fp_check_target_register(f;);
if (tnp_isrcode = fp_reg_disabled(fy, f, f3 fyg))
di sabl ed_fp_register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRIf5]) || fp_is_natval (FR f3]) || fp_is_natval (FR[f4)) {
FRf;] = NATVAL;
fp_update_psr(f,);
} else {
trp_defaul t _result = fns_fnma_exception_fault_check(f, f3 fyg
pc, sf, & np_fp_env);
if (fp_raise fault(tnp_fp_env))
fp_exception_fault(fp_decode_fault(tnp_fp_env));

if (fp_is_nan_or_inf(tnp_default result)) {
FRIf;] = tnp_default_result;
} else {
tmp_res = fp_nul (fp_reg_read(FR f3]), fp_reg_read(FR f4));
tnp_res.sign = ltnp_res. sign;
if (fo21=0)
tmp_res = fp_add(tnp_res, fp_reg_read(FR f;]), tnmp_fp_env);
FRIf;] = fp_ieee_round(tnp_res, & np_fp_env);
}

fp_update_fpsr(sf, tnp_fp_env);

fp_update_psr(f,);

if (fp_raise_traps(tnp_fp_env))
fp_exception_trap(fp_decode_trap(tnp_fp_env));

}
}
FP Exceptions: Invalid Operation (V) Overflow (O)
Denormal/Unnormal Operand (D) Inexact (I)
Software Assist (SWA) fault Software Assist (SWA) trap
Underflow (U)
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Floating-Point Negative Multiply

Format: (gp) fnmpy.pc.sf f; =13, Ty pseudo-op of: (qp) fnmapc.sf f; = fs, f4,f0

Description:  The product FR f3 and FR f, is computed to infinite precision and then negated. The resulting valueisthen
rounded to the precision indicated by pc (and possibly FPSR.sf.pc and FPSR.sf.wre) using the rounding
mode specified by FPSR.sf.rc. The rounded result is placed in FR f;.
If either FR f3 or FR fyisaNaTVal, FR f; is set to NaTVal instead of the computed result.
The mnemonic values for the opcodptsare given infable 7-17 on page 7-3The mnemonic values for
sf are given iffable 7-18 on page 7-3For the encodings and interpretation of the status fiptd'sre,
andrc, refer toTable 5-5andTable 5-6 on page 5:7

Operation: See “Floating-Point Negative Multiply Add” on page 7-59
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Floating-Point Normalize
Format: (gp) fnorm.pc.sf f; =f3 pseudo-op of: (qp) fmapc.sf f; =f3, f1, fO

Description:  FR fyisnormalized and rounded to the precision indicated by pc (and possibly FPSR.sf.pc and
FPSR.sf.wre) using the rounding mode specified by FPSR.sf.rc, and placed in FR ;.

If FRfzisaNaTVal, FRf; is set to NaTVal instead of the computed result.

The mnemonic values for the opcodacsare given infable 7-17 on page 7-3The mnemonic values for
sf are given ifTable 7-18 on page 7-3For the encodings and interpretation of the status fiptd'are,
andrc, refer toTable 5-5andTable 5-6 on page 5:7

Operation: See “Floating-Point Multiply Add” on page 7-48

IA-64 Application Developer’s Architecture Guide, Rev. 1.0 7-61



for

intel.

Floating-Point Logical Or

Format:

Description:

Operation:

(gp) for f; =15 f3 Fo

The bit-wise logical OR of the significand fields of FR f, and FR f5 is computed. The resulting valueis
stored in the significand field of FR f;. The exponent field of FR f; is set to the biased exponent for 2.0%3
(Ox1003E) and the sign field of FR f; is set to positive (0).

If either FR f, or FR fzisaNaTVal, FR f; is set to NaTVal instead of the computed result.

if (PRIgp]) {
fp_check_target_register(f;);
if (tnp_isrcode = fp_reg_disabled(f;, fo f3z 0))
di sabled fp register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRf;]) || fp_is_natval (FR f3)) {
FR{ f;] = NATVAL;
} else {
FR(f4].significand = FR{f,].significand | FR f3].significand;
FR f ;] . exponent = FP_| NTEGER EXP;
FR f;].sign = FP_SI GN _POSI Tl VE

fp_update_psr(f,);

FP Exceptions: None
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Floating-Point Parallel Absolute Value

Format: (gp) fpabs f; =13 pseudo-op of: (qp) fpmerge:s f; =10, f5

Description:  The absolute values of the pair of single precision valuesin the significand field of FR f5 are computed
and stored in the significand field of FR f;. The exponent field of FR f; is set to the biased exponent for
2.0%3 (0x1003E) and the sign field of FR f; is set to positive (0).
If FRfyisaNaTVal, FRf; is set to NaTVal instead of the computed result.

Operation: See “Floating-Point Parallel Merge” on page 7-74
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Floating-Point Pack

Format:

Description:

(ap) fpack f; =", f3 pack_form F9

The register format numbersin FR f, and FR f5 are converted to single precision memory format. These
two single precision numbers are concatenated and stored in the significand field of FRf; . The exponent
field of FR f; is set to the biased exponent for 2.0%3 (Ox1003E) and the sign field of FR f; is set to positive
(0).

If either FR f, or FR fzisaNaTVal, FR f; is set to NaTVal instead of the computed result.

Figure 7-13. Floating-point Pack

Operation:

81 0 81 0
f2 82-bit FR to Single Mem Format Conversion fs
63 32 31 0
l ] |
f1
if (PREgp]) {

fp_check_target_register(f;);
if (tnp_isrcode = fp_reg_disabled(f; fo f3 0))
di sabled fp register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRIf5]) || fp_is_natval (FRf3)) {
FR ;] = NATVAL;

} else {
tmp_res_hi = fp_single(FR f,]);
tmp_res_lo = fp_single(FR f3]);

FR{f4].significand = fp_concatenate(tnp_res_hi, tnp_res_|lo);
FR f ;] . exponent = FP_| NTEGER EXP;
FR[ f].sign = FP_SI GN_PCSI Tl VE;

}
fp_update_psr(f,);

FP Exceptions: None
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Floating-Point Parallel Absolute Maximum
Format: (gp) fpamax.sf f; =15, f5 F8

Description:  The paired single precision values in the significands of FR f, and FR f3 are compared. The operands with
the larger absolute value are returned in the significand field of FR f;.

If the magnitude of high (low) FR f5 isless than the magnitude of high (low) FR f,, high (low) FR f; gets
high (low) FR f,. Otherwise high (low) FR f; gets high (low) FR f3.

If high (low) FR f, or high (low) FR fyisaNaN, and neither FR f, or FR fyisaNaTVal, high (low) FR f;
gets high (low) FR f3.

The exponent field of FR f; is set to the biased exponent for 2.0%% (0x1003E) and the sign field of FR f; is
set to positive (0).

If either FR f, or FR fzisaNaTVal, FR f; is set to NaTVal instead of the computed result.

This operation does not propagate NaNs the same way as other floating-point arithmetic operations. The
Invalid Operation is signaled in the same manner as for the fpcmp.It operation.

The mnemonic values for sf are given in Table 7-18 on page 7-31.

Operation: if (PR gp]) {
fp_check_target_register(f;);
if (tnp_isrcode = fp_reg_disabled(f;, fo f3z 0))
di sabled fp register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRf;]) || fp_is_natval (FR f3)) {
FR{ f;] = NATVAL;
} else {
f pm nmax_excepti on_fault _check(f, f3 sf, &np_fp_env);
if (fp_raise fault(tnp_fp_env))
fp_exception_fault(fp_decode_fault(tnp_fp_env));

tmp_fr2
tp_fr3

tp_right = fp_reg_read_hi (f),);

trp_left = fp_reg_read_hi(f3);

trp_right.sign = FP_SI GN_PCSI Tl VE;

tnp_left.sign = FP_SI GN_PCsl Tl VE;

trp_bool _res = fp_less_than(tnp_left, tnp_right);
tmp_res_hi = fp_single(tnp_bool _res ? tnp_fr2: tnp_fr3);

tmp_fr2 = tnp_right = fp_reg_read_l o(f));

tmp_fr3 = tnp_left = fp_reg_read_|l o(f3);

tnp_right.sign = FP_SI GN_PCSI Tl VE;

trp_left.sign = FP_SI GN_PCSI Tl VE;

trp_bool _res = fp_less_than(tnp_left, tnp_right);
tnmp_res_lo = fp_single(tnp_bool _res ? tnp_fr2: tnp_fr3);

FR[f4].significand = fp_concatenate(tnp_res_hi, tnp_res_|o);
FR f ;] . exponent = FP_| NTEGER EXP;
FR[ f].sign = FP_SI GN_PCSI Tl VE;
fp_update fpsr(sf, tnp_fp_env);
}
fp_update_psr(fy);
FP Exceptions: Invalid Operation (V)

Denormal/Unnormal Operand (D)
Software Assist (SWA) fault
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Floating-Point Parallel Absolute Minimum
Format: (gp) fpamin.sf f; =1, f3 F8

Description:  The paired single precision values in the significands of FR f, or FR f3 are compared. The operands with
the smaller absolute value is returned in the significand of FR f.

If the magnitude of high (low) FR f, is less than the magnitude of high (low) FR f3, high (low) FR f; gets
high (low) FR f,. Otherwise high (low) FR f; gets high (low) FR f3.

If high (low) FR f, or high (low) FR fyisaNaN, and neither FR f, or FR fyisaNaTVal, high (low) FR f;
gets high (low) FR f3.

The exponent field of FR f; is set to the biased exponent for 2.0%% (0x1003E) and the sign field of FR f; is
set to positive (0).

If either FR f, or FR fzisNaTVal, FR f; is set to NaTVal instead of the computed result.

This operation does not propagate NaNs the same way as other floating-point arithmetic operations. The
Invalid Operation is signaled in the same manner as for the fpcmp.It operation.

The mnemonic values for sf are given in Table 7-18 on page 7-31.

Operation: if (PR gp]) {
fp_check_target_register(f;);
if (tnp_isrcode = fp_reg_disabled(f;, fo f3z 0))
di sabled fp register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRf;]) || fp_is_natval (FR f3)) {
FR{ f;] = NATVAL;
} else {
f pm nmax_excepti on_fault _check(f, f3 sf, &np_fp_env);
if (fp_raise fault(tnp_fp_env))
fp_exception_fault(fp_decode_fault(tnp_fp_env));

tmp_fr2
tmp_fr3

tp_left = fp_reg_read_hi(f));

trp_right = fp_reg_read_hi(f3);

trp_left.sign = FP_SI GN_PCSI Tl VE;

tnp_right.sign = FP_SI GN_PCSI Tl VE;

trp_bool _res = fp_less_than(tnp_left, tnp_right);
tnp_res_hi = fp_single(tnp_bool _res ? tnp_fr2: tnp_fr3);

tmp_fr2 = tnp_left = fp_reg_read_|l o(f));

tmp_fr3 = tnp_right = fp_reg_read_|l o(f3);

tnp_left.sign = FP_SI GN_PGCsl Tl VE;

trp_right.sign = FP_SI GN_PCSI Tl VE;

trp_bool _res = fp_less_than(tnp_left, tnp_right);
tnmp_res_lo = fp_single(tnp_bool _res ? tnp_fr2: tnp_fr3);

FR[f4].significand = fp_concatenate(tnp_res_hi, tnp_res_|lo);
FR f ;] . exponent = FP_| NTEGER EXP;
FR[ f].sign = FP_SI GN_PCSI Tl VE;
fp_update fpsr(sf, tnp_fp_env);
}
fp_update_psr(fy);
FP Exceptions: Invalid Operation (V)

Denormal/Unnormal Operand (D)
Software Assist (SWA) fault
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Floating-Point Parallel Compare
Format: (gp) fpcmp.frel.sf f1=1,, f5 F8

Description:  Thetwo pairsof single precision source operandsin the significand fields of FR f, and FR f3 are compared
for one of twelve relations specified by frel. This produces a boolean result which is a mask of 32 1’s if the
comparison condition is true, and a mask of 32 0’s otherwise. This result is written to a pair of 32-bit
integers in the significand field of FR The exponent field of FR is set to the biased exponent for®3.0
(0x1003E) and the sign field of ARRis set to positive (0).

Table 7-24. Floating-point Parallel Comparison Results

PR[gp]==1
PRIgp]==0 result==false, result==true, One or More
No Source NaTVals No Source NaTVals Source NaTVal's
unchanged 0...0 1.1 NaTVal

The mnemonic values faf are given inTable 7-18 on page 7-31

The relations are defined for each of the comparison typesbile 7-24 Of the twelve relations, not all

are directly implemented in hardware. Some are actually pseudo-ops. For these, the assembler simply
switches the source operand specifiers and/or switches the predicate type specifiers and uses an
implemented relation.

If either FRf, or FRf;is a NaTVal, FR is set to NaTVal instead of the computed result.

Table 7-25. Floating-point Parallel Comparison Relations

frel Completer . Quiet NaN
frel Unabbreviated Relation Pseudo-op of as Operanq
Signals Invalid

eq equal fo==1fs No
It less than fo<fy Yes
le less than or equal fr<=13 Yes
gt greater than fo> 1y It fy o f3 Yes
ge greater than or equal fo>=1s3 le fr o f3 Yes
unord unordered fo2f3 No
neq not equal i(fy ==fg) No
nit not less than i(fy < f3) Yes
nle not less than or equal I(fy <= 13) Yes
ngt not greater than I(fy > fa) nit fr o 13 Yes
nge not greater than or equal I(fy >=f3) nle fy o f3 Yes
ord ordered I(fy 7 f3) No
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Operation: if (PRLgp]) {
fp_check_target_register(f;);
if (tnp_isrcode = fp_reg_disabled(f; fo fsz 0))
di sabled fp register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRIf5]) || fp_is_natval (FRf3])) {
FR ;] = NATVAL;
} else {
f pcnp_exception_faul t_check(f, f3 frel, sf, &np_fp_env);

if (fp_raise_fault(tnp_fp_env))
fp_exception_fault(fp_decode fault(tnp_fp_env));

tmp_fr2 = fp_reg_read_hi (f));

tmp_fr3 = fp_reg_read_hi(f3);

if (frel =='eq) tmp_rel= fp_equal (tnp_fr2, tnp_fr3);

else if ( frel =='It) tmp_rel =fp_less_than( tmp_fr2, tnp_fr3);

else if ( frel =='le") tmp_rel =fp_lesser_or_equal( tnp_fr2, tmp_fr3);

else if ( frel =='gt) tmp_rel =fp_less_than( tnp_fr3, tnp_fr2);

else if ( frel ==‘ge’) tmp_rel=fp_lesser_or_equal( tnp_fr3, tnmp_fr2);

else if ( frel ==‘unord)tmp_rel = fp_unordered( tnp_fr2, tnp_fr3);

else if ( frel =='neq’) tmp_rel=! fp_equal (tnp_fr2, tnmp_fr3);

else if ( frel =='nlt) tmp_rel = !fp_less_than( tnp_fr2, tnp_fr3);

else if frel =='nle’) tmp_rel = !fp_lesser_or_equal( tnp_fr2, tnmp_fr3);
else if ( frel =='ngt) tmp_rel = Ifp_less_than( tmp_fr3, tnp_fr2);

else if ( frel =='nge’) tmp_rel = fp_lesser_or_equal( tnp_fr3, tnp_fr2);
else tmp_rel = fp_unordered( tnp_fr2, tnp_fr3);//ord

tmp_res_hi = (tmp_rel ? OXFFFFFFFF : 0x00000000);

tmp_fr2 = fp_reg_read_lo( f5);

tmp_fr3 =fp_reg_read_lo( f 3);

if ( frel =='eq) tmp_rel= fp_equal (tnp_fr2, tnp_fr3);

else if ( frel =='It) tmp_rel =fp_less_than( tmp_fr2, tnp_fr3);

else if ( frel =='le") tmp_rel =fp_lesser_or_equal( tnp_fr2, tmp_fr3);
else if ( frel =='gt) tmp_rel =fp_less_than( tnp_fr3, tnp_fr2);

else if ( frel ==‘ge’) tmp_rel=fp_lesser_or_equal( tnp_fr3, tnmp_fr2);
else if ( frel ==‘unord)tmp_rel = fp_unordered( tnp_fr2, tnp_fr3);

else if ( frel =='neq’) tmp_rel=! fp_equal (tnp_fr2, tnp_fr3);

else if ( frel =='nlt) tmp_rel = !fp_less_than( tnp_fr2, tnp_fr3);

else if frel =='nle’) tmp_rel = !fp_lesser_or_equal( tnp_fr2, tnmp_fr3);
else if ( frel =='ngt) tmp_rel = Ifp_less_than( tmp_fr3, tnp_fr2);

else if ( frel =='nge’) tmp_rel = fp_lesser_or_equal( tnp_fr3, tnp_fr2);
else tmp_rel = fp_unordered( tnp_fr2, tnp_fr3);//ord

tmp_res_lo = (tmp_rel ? OXFFFFFFFF : 0x00000000);
FR[ f ;].significand = fp_concatenate(tmp_res_hi, tmp_res_lo);
FR[f ;].exponent = FP_INTEGER_EXP;
FR[ f ;].sign = FP_SIGN_POSITIVE;
fp_update fpsr(sf, tnp_fp_env);

}

fp_update_psr(f,);

FP Exceptions: Invalid Operation (V)

Denormal/Unnormal Operand (D)
Software Assist (SWA) fault
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Convert Parallel Floating-Point to Integer

Format: (gp) fpevt.fx.sf f; =1, signed_form F10
(gp) fpevt.fx.trunc.sf f; =1, signed_form, trunc_form F10
(gp) fpevt.fxu.sf f; =f, unsigned form F10
(gp) fpevt.fxu.trunc.sf fq =1, unsigned form, trunc_form F10

Description:  The pair of single precision valuesin the significand field of FR f, is converted to a pair of 32-bit signed
integers (signed_form) or unsigned integers (unsigned_form) using either the rounding mode specified in
the FPSR.sf.rc, or using Round-to-Zero if thetrunc_form of theinstructionisused. Theresult iswritten as
apair of 32-hit integers into the significand field of FR f;. The exponent field of FR f; is set to the biased
exponent for 2.0%3 (0x1003E) and the sign field of FR f, is set to positive (0). If the result of the
conversion doesn't fit in a 32-bit integer the 32-bit integer indefinite value 0x80000000 is used as the
result if the IEEE Invalid Operation Floating-Point Exception fault is disabled.

If FR f5 is a NaTVal, FR; is set to NatVal instead of the computed result.

The mnemonic values faf are given infable 7-18 on page 7-31
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Operation: if (PREgp]) {
fp_check_target_register(f;);
if (tnp_isrcode = fp_reg_disabled(f;, f, 0, 0))
di sabled fp register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRf5])) {
FR{ f;] = NATVAL;
fp_update_psr(f,);
} else {
trmp_defaul t _result_pair = fpcvt_exception_fault_check(f, sf,
signed_form trunc_form & np_fp_env);
if (fp_raise_fault(tnp_fp_env))
fp_exception_fault(fp_decode fault(tnp_fp_env));

if (fp_is_nan(tnp_default _result _pair.hi)) {
trmp_res_hi = INTEGER | NDEFI NI TE_32_BIT;
} else {
tmp_res = fp_ieee_rnd_to_int_sp(fp_reg_read_hi(f,), HGH &np_fp_env);
if (tnp_res. exponent)
trp_res.significand = fp_UB4_rsh(
tnp_res.significand, (FP_INTEGER EXP - tnp_res. exponent));
if (signed_form && tnp_res. sign)
tnp_res.significand = (~tnp_res.significand) + 1,

tmp_res_hi = tnp_res.significand{31:0};
}

if (fp_is_nan(tnp_default _result_pair.lo)) {
tnp_res_l o = I NTEGER | NDEFI NI TE_32_BIT;
} else {
tmp_res = fp_ieee_rnd_to_int_sp(fp_reg_read_lo(f,), LON & np_fp_env);
if (tnp_res.exponent)
tnp_res.significand = fp_U64 rsh(
tnp_res.significand, (FP_INTEGER EXP - tnp_res. exponent));
if (signed_form & tnp_res. sign)
tmp_res.significand = (~tnp_res.significand) + 1;

tnp_res_lo = tnp_res. significand{31: 0};
}

FR{f;].significand = fp_concatenate(tnp_res_hi, tnp_res_|lo0);
FR f ;] . exponent = FP_| NTEGER EXP;
FR[ f;].sign = FP_SI GN_PCSI Tl VE;

fp_update fpsr(sf, tnp_fp_env);

fp_update_psr(fy);

if (fp_raise_traps(tnp_fp_env))
fp_exception_trap(fp_decode trap(tnp_fp_env));

}

FP Exceptions: Invalid Operation (V) Inexact (1)
Denormal/Unnormal Operand (D)
Software Assist (SWA) Fault
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Floating-Point Parallel Multiply Add
Format: (gp) fpmasf f =13, fy, T F1

Description:  The pair of products of the pairs of single precision valuesin the significand fields of FR f3 and FR f, are
computed to infinite precision and then the pair of single precision valuesin the significand field of FRf,
is added to these products, again in infinite precision. The resulting values are then rounded to single
precision using the rounding mode specified by FPSR.sf.rc. The pair of rounded results are stored in the
significand field of FR f;. The exponent field of FR f; is set to the biased exponent for 2.0%3 (0x1003E)
and the sign field of FR f; is set to positive (0).

If any of FR f3, FR f4, or FRf, isaNaTVal, FR f, is set to NaTVal instead of the computed results.

Note:  If f, isf0 in the fpmainstruction, just the IEEE multiply operation is performed. (See
“Floating-Point Parallel Multiply” on page 7-78R f1, as an operand, is not a packed pair of
1.0 values, it is just the register file format’s 1.0 value.

The mnemonic values for sf are given in Table 7-18 on page 7-31.
The encodings and interpretation for the status fietdese given inTable 5-6 on page 5-7

Operation: if (PRgp]) {
fp_check_target_register(f;);
if (tnp_isrcode = fp_reg_disabled(f;, fo f3 fy))
di sabl ed_fp_register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRIf;]) || fp_is_natval (FR f3]) || fp_is_natval (FR[f,)) {
FR{ f;] = NATVAL;
fp_update_psr(f,);
} else {
trp_defaul t _result_pair = fpma_exception_faul t_check(f,,
fa fg sf, &np_fp_env);
if (fp_raise_fault(tnp_fp_env))
fp_exception_fault(fp_decode fault(tnp_fp_env));

if (fp_is_nan_or _inf(tnp_default _result_pair.hi)) {
tmp_res_hi = fp_single(tnp_default_result_pair.hi);

} else {
tmp_res = fp_nul (fp_reg_read_hi (f3), fp_reg_read_hi(fg);
if (fo21=0)

tmp_res = fp_add(tnp_res, fp_reg_read_hi(f,), tnp_fp_env);
tnp_res_hi = fp_ieee_round_sp(tnp_res, HGH &np_fp_env);
}

if (fp_is_nan_or_inf(tnp_default_result_pair.lo)) {
tnp_res_lo = fp_single(tnp_default_result_pair.lo);

} else {
tmp_res = fp_nul (fp_reg_read_lo(f3), fp_reg_read_lo(fy);
if (f,1=0)

tmp_res = fp_add(tnp_res, fp_reg_read_lo(f,), tnp_fp_env);
tnp_res lo = fp_ieee_round_sp(tnp_res, LON & np_fp_env);
}

FR[f;].significand = fp_concatenate(tnp_res_hi, tnp_res_|lo0);
FR f ;] . exponent = FP_| NTEGER EXP;
FR f;].sign = FP_SI GN_PCSI Tl VE;

fp_update fpsr(sf, tnp_fp_env);

fp_update_psr(f,);

if (fp_raise_traps(tnp_fp_env))
fp_exception_trap(fp_decode_trap(tnp_fp_env));
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FP Exceptions: Invalid Operation (V) Underflow (U)
Denormal/Unnormal Operand (D) Overflow (O)
Software Assist (SWA) Fault Inexact (1)

Software Assist (SWA) trap
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Floating-Point Parallel Maximum
Format: (gp) fpmax.sf f; =1, fa F8

Description:  The paired single precision values in the significands of FR f, or FR f3 are compared. The operands with
thelarger value is returned in the significand of FR f;.

If the value of high (low) FR f3isless than the value of high (low) FR f,, high (low) FR f; gets high (low)
FR f,. Otherwise high (low) FR f; gets high (low) FR fa.

If high (low) FR f, or high (low) FR fzisaNaN, high (low) FR f; gets high (low) FR fa.

The exponent field of FR f; is set to the biased exponent for 2.0%% (0x1003E) and the sign field of FR f; is
set to positive (0).

If either FR f, or FR fzisNaTVal, FR f; is set to NaTVal instead of the computed result.

This operation does not propagate NaNs the same way as other floating-point arithmetic operations. The
Invalid Operation is signaled in the same manner as for the fpcmp.It operation.

The mnemonic values for sf are given in Table 7-18 on page 7-31.

Operation: if (PR gp]) {
fp_check_target_register(f;);
if (tnp_isrcode = fp_reg_disabled(f; f, f3 0))
di sabled fp register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRIf;]) || fp_is_natval (FRf3)) {
FR{ ;] = NATVAL;
} else {
f pm nmax_exception_faul t _check(f, f3 sf, &np_fp_env);
if (fp_raise fault(tnp_fp_env))
fp_exception_fault(fp_decode fault(tnp_fp_env));

tmp_fr2 = tnp_right = fp_reg_read_hi(fy);

tmp_fr3 = tnp_left = fp_reg_read_hi(f3);

trp_bool _res = fp_less_than(tnp_left, tnp_right);
tnp_res_hi = fp_single(tnp_bool _res ? tnmp fr2 : tnp_fr3);

tmp_fr2 = tnp_right = fp_reg_read_l o(f));

tmp_fr3 = tnp_left = fp_reg_read_|l o(f3);

tnp_bool res = fp_less than(tnp_left, tnmp_right);
tmp_res_lo = fp_single(tnp_bool _res ? tnp_fr2: tnp_fr3);

FR{f;].significand = fp_concatenate(tnp_res_hi, tnp_res_|lo);
FR f ;] . exponent = FP_| NTEGER EXP;
FR{ f4].sign = FP_SI GN_POSI Tl VE;

fp_update _fpsr(sf, tnp_fp_env);
}
fp_update_psr(fy);
}

FP Exceptions: Invalid Operation (V)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault
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Floating-Point Parallel Merge

Format:

Description:

(gp) fpmerge.ns fi =1, f3 neg_sign form Fo
(gp) fpmerge.s fy =15, 3 sign_form Fo
(gp) fpmerge.se fy =15, f3 sign_exp_form Fo

For the neg_sign_form, the signs of the pair of single precision valuesin the significand field of FR f, are
negated and concatenated with the exponents and the significands of the pair of single precision valuesin
the significand field of FR f3 and stored in the significand field of FRf;. Thisform can be used to negate a
pair of single precision floating-point numbers by using the same register for f, and f3.

For the sign_form, the signs of the pair of single precision valuesin the significand field of FR f, are
concatenated with the exponents and the significands of the pair of single precision valuesin the
significand field of FR f3 and stored in FR f;.

For the sign_exp_form, the signs and exponents of the pair of single precision valuesin the significand
field of FR f, are concatenated with the pair of single precision significands in the significand field of FR
f3 and stored in the significand field of FR f;.

For all forms, the exponent field of FR f; is set to the biased exponent for 2.0 (0x1003E) and the sign
field of FR f; is set to positive (0).

For all forms, if either FR f, or FR fzisaNaTVa, FR f; is set to NaTVal instead of the computed result.

Figure 7-14. Floating-point Merge Negative Sign Operation

13|1 |
62 3230 0
N [ |
e s o7
31 0
] |
f1
Figure 7-15. Floating-point Merge Sign Operation
I6|3 |3|1 |
o 62 3230 0
N [ |
){ / f3
sign bit 63 31 0
[ ] |
f1
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Figure 7-16. Floating-point Merge Sign and Exponent Operation

fomerge

63 5554 31 2322 0
I | | | |
f2 \63 55 54 32 2322
(N | |
sign and / f3
exponent W 63 55 54 31 2322 0
| | | | |
fy
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Operation: if (PREgp]) {
fp_check_target_register(f;);
if (tnp_isrcode = fp_reg_disabled(f; fo f3 0))
di sabled fp register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRIf5]) || fp_is_natval (FRf3])) {

FR(f ;] = NATVAL;

} else {
if (neg_sign form {

}

tnp_res_hi =
I

tnp_res lo =

(!'FR 7] . significand{63} << 31)
(FR f3].significand{62:32});
(!'FR 5] . significand{31} << 31)
(FR f3].significand{30:0});

} elseif (sign_forn {

tnp_res_hi =
I
tnp_res_lo =
I

} else {
tnp_res_hi

(FR fo].significand{63} << 31)
(FR f3].significand{62:32});
(FRf,].significand{31} << 31)
(FR f3].significand{30:0});
/1 sign_exp_form
(FR{f,].significand{63: 55} << 23)
(FR{ f3].significand{54:32});
(FR{ 2] .significand{31: 23} << 23)
(FR f3].significand{22:0});

FR[f;].significand = fp_concatenate(tnp_res_hi, tnp_res_|lo0);
FR f ;] . exponent = FP_| NTEGER EXP;
FR[ f;].sign = FP_SI GN_PCSI Tl VE;

fp_update_psr(fy);

}

FP Exceptions: None
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Floating-Point Parallel Minimum
Format: (gp) fpmin.st f; =15, f5 F8

Description:  The paired single precision values in the significands of FR f, or FR f3 are compared. The operands with
the smaller valueisreturned in significand of FR f;.

If the value of high (low) FR f, isless than the value of high (low) FR f5, high (low) FR f; gets high (low)
FR f,. Otherwise high (low) FR f; gets high (low) FR fa.

If high (low) FR f, or high (low) FR fzisaNaN, high (low) FR f; gets high (low) FR fa.

The exponent field of FR f; is set to the biased exponent for 2.0%% (0x1003E) and the sign field of FR f; is
set to positive (0).

If either FR f, or FR fzisaNaTVal, FR f; is set to NaTVal instead of the computed result.

This operation does not propagate NaNs the same way as other floating-point arithmetic operations. The
Invalid Operation is signaled in the same manner as for the fpcmp.It operation.

The mnemonic values for sf are given in Table 7-18 on page 7-31.

Operation: if (PR gp]) {
fp_check_target_register(f;);
if (tnp_isrcode = fp_reg_disabled(f; f, f3 0))
di sabled fp register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRIf;]) || fp_is_natval (FRf3)) {
FR{ ;] = NATVAL;
} else {
f pm nmax_exception_faul t _check(f, f3 sf, &np_fp_env);
if (fp_raise fault(tnp_fp_env))
fp_exception_fault(fp_decode fault(tnp_fp_env));

tmp_fr2 = tnp_left = fp_reg_read_hi(f),);

tmp_fr3 = tnp_right = fp_reg_read_hi(f3);

trp_bool _res = fp_less_than(tnp_left, tnp_right);
tnp_res_hi = fp_single(tnp_bool res ? tnp fr2: tnp_fr3);

tmp_fr2 = tnp_left = fp_reg_read_| o(f));

tmp_fr3 = tnp_right = fp_reg_read_lo(f3);

tnp_bool _res = fp_less than(tnp_left, tnmp_right);
tmp_res_lo = fp_single(tnp_bool _res ? tnp_fr2: tnp_fr3);

FR{f;].significand = fp_concatenate(tnp_res_hi, tnp_res_|lo);
FR f ;] . exponent = FP_| NTEGER EXP;
FR{ f4].sign = FP_SI GN_POSI Tl VE;

fp_update _fpsr(sf, tnp_fp_env);
}
fp_update_psr(fy);
}

FP Exceptions: Invalid Operation (V)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault
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Floating-Point Parallel Multiply
Format: (gp) fpmpy.sf f; =13, T4 pseudo-op of: (qp) fpmasf f; =13, fy, fO

Description:  The pair of products of the pairs of single precision valuesin the significand fields of FR f3 and FR f, are
computed to infinite precision. The resulting values are then rounded to single precision using the
rounding mode specified by FPSR.sf.rc. The pair of rounded results are stored in the significand field of
FR f,. The exponent field of FR f; is set to the biased exponent for 2.06% (0x1003E) and the sign field of
FR f; is set to positive (0).

If either FR f3, or FRf,isaNaTVal, FR f; is set to NaTVal instead of the computed results.

The mnemonic values for sf are given in Table 7-18 on page 7-31.
The encodings and interpretation for the status fiettése given inTable 5-6 on page 5-7

Operation: See “Floating-Point Parallel Multiply Add” on page 7-71
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Floating-Point Parallel Multiply Subtract

Format: (gp) fpms.sf f; =13, fy, o F1

Description:  The pair of products of the pairs of single precision valuesin the significand fields of FR f3 and FR f, are
computed to infinite precision and then the pair of single precision valuesin the significand field of FRf,
is subtracted from these products, again in infinite precision. The resulting values are then rounded to
single precision using the rounding mode specified by FPSR.sf.rc. The pair of rounded results are storedin
the significand field of FR f;. The exponent field of FR f; is set to the biased exponent for 2.0 (Ox1003E)
and the sign field of FR f; is set to positive (0).

If any of FR f3, FR f4, or FRf, isaNaTVal, FR f, is set to NaTVal instead of the computed results.

Note: I f,isf0in the fpmsinstruction, just the IEEE multiply operation is performed.

The mnemonic values for sf are given in Table 7-18 on page 7-31.
The encodings and interpretation for the status fietdese given inTable 5-6 on page 5-7

Operation: if (PRgp]) {
fp_check_target_register(f;);
if (tnp_isrcode = fp_reg_disabled(f;, fo f3 fy))
di sabled fp register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRIf5]) || fp_is_natval (FR f3]) || fp_is_natval (FR[fg)) {
FR ;] = NATVAL;
fp_update_psr(f,);
} else {
trp_defaul t _result_pair = fpns_fpnma_exception_fault_check(f, f3 fyu
sf, & np_fp_env);
if (fp_raise_fault(tnp_fp_env))
fp_exception_fault(fp_decode fault(tnp_fp_env));

if (fp_is_nan_or _inf(tnp_default _result_pair.hi)) {
tnp_res_hi = fp_single(tnp_default _result_pair.hi);

} else {
tmp_res = fp_nul (fp_reg_read_hi (f3), fp_reg_read_hi(fy);
if (fo!=0) {

trp_sub = fp_reg_read_hi (f));
tnp_sub. sign = 'tnp_sub. sign;
tnmp_res = fp_add(tnp_res, tnp_sub, tnp_fp_env);
}
tnmp_res_hi = fp_ieee_round_sp(tnp_res, HGH &np_fp_env);
}

if (fp_is_nan_or _inf(tnp_default _result_pair.lo)) {
tnp_res lo = fp_single(tnp_default _result_pair.lo);

} else {
tmp_res = fp_nul (fp_reg_read_lo(f3), fp_reg_read_lo(fy);
if (fo1!=0) {

trp_sub = fp_reg_read_l o(f));
tnp_sub. sign = 'tnp_sub. sign;
tnp_res = fp_add(tnp_res, tnp_sub, tnp _fp_env);
}
tnmp_res_lo = fp_ieee_round_sp(tnp_res, LON & np_fp_env);
}

FR{f4].significand = fp_concatenate(tnp_res_hi, tnp_res_|lo);
FR f ;] . exponent = FP_| NTEGER EXP;
FR[ f].sign = FP_SI GN_PCSI Tl VE;
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fp_update fpsr(sf, tnp_fp_env);

fp_update_psr(f,);

if (fp_raise_traps(tnp_fp_env))
fp_exception_trap(fp_decode trap(tnp_fp_env));

}
}
FP Exceptions: Invalid Operation (V) Underflow (U)
Denormal/Unnormal Operand (D) Overflow (O)
Software Assist (SWA) Fault Inexact (1)

Software Assist (SWA) trap
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Floating-Point Parallel Negate

Format: (gp) fpneg f; =13 pseudo-op of: (qp) fpmerge.ns f; =13, f3

Description:  The pair of single precision valuesin the significand field of FR f5 are negated and stored in the
significand field of FR . The exponent field of FR f; is set to the hiased exponent for 2.05% (0x1003E)
and the sign field of FR f; is set to positive (0).
If FRfyisaNaTVal, FRf; is set to NaTVal instead of the computed result.

Operation: See “Floating-Point Parallel Merge” on page 7-74
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Floating-Point Parallel Negate Absolute Value

Format: (gp) fpnegabs f; =f3 pseudo-op of: (gp) fpmerge.ns f; =10, f5

Description:  The absolute values of the pair of single precision valuesin the significand field of FR f are computed,
negated and stored in the significand field of FR f;. The exponent field of FR f; is set to the biased
exponent for 2.0%3 (0x1003E) and the sign field of FR f; is set to positive (0).
If FRfyisaNaTVal, FRf; is set to NaTVal instead of the computed result.

Operation: See “Floating-Point Parallel Merge” on page 7-74
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Floating-Point Parallel Negative Multiply Add

Format:

Description:

Operation:

(gp) fpnmasf fi =fa, f4, o

fpnma

F1

The pair of products of the pairs of single precision valuesin the significand fields of FR f3 and FR f, are
computed to infinite precision, negated, and then the pair of single precision valuesin the significand field
of FR f, are added to these (negated) products, again in infinite precision. The resulting values are then
rounded to single precision using the rounding mode specified by FPSR.sf.rc. The pair of rounded results
are stored in the significand field of FR f;. The exponent field of FR f; is set to the biased exponent for
2.0%3 (0x1003E) and the sign field of FR f; is set to positive (0).

If any of FR f3, FR f4, or FR f, isaNaTVal, FR f; is set to NaTVal instead of the computed result.

Note:

If f5 isf0 in the fpnmainstruction, just the IEEE multiply operation (with the product being

negated before rounding) is performed.

The mnemonic values for sf are given in Table 7-18 on page 7-31.
The encodings and interpretation for the status fietdsse given inTable 5-6 on page 5-7

it (PRgp]) { _
fp_check_target_register(fy);
if (tnp_isrcode = fp_reg_disabled(f;, fo f3 fy))

di sabl ed_fp_register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRIf5]) || fp_is_natval (FRf3) || fp_is_natval (

FRf;] = NATVAL;
fp_update_psr(fy);

} else {

trp_defaul t _result_pair = fpns_fpnma_exception_faul t _check(f,,
sf,
if (fp_raise_fault(tnp_fp_env))
fp_exception_fault(fp_decode fault(tnp_fp_env));

if (fp_is_nan_or_inf(tnp_default_result_pair.hi)) {
tp_res_hi = fp_single(tnp_default_result_pair.hi);

} else {
tmp_res = fp_nul (fp_reg_read_hi (f3), fp_reg_read_hi(fg);
tnp_res.sign = !tnp_res.sign;
if (fo21=0)

FREF4)) A

fa fgu
& mp_f p_env);

tmp_res = fp_add(tnp_res, fp_reg_read_hi(f,), tnp_fp_env);

tnp_res_hi = fp_ieee_round_sp(tnp_res, HGH & np_fp_env);

if (fp_is_nan_or_inf(tnp_default_result_pair.lo)) {
tmp_res_lo = fp_single(tnp_default_result_pair.lo);

} else {
tmp_res = fp_nul (fp_reg_read_lo(f3), fp_reg_read_lo(fy);
tnp_res.sign = !tnp_res.sign;
if (fo21=0)

tnmp_res = fp_add(tnp_res, fp_reg_read_lo(f,), tnmp_fp_env);

tnp_res_lo = fp_ieee_round_sp(tnp_res, LON & np_fp_env);
}

FR[f4].significand = fp_concatenate(tnp_res_hi, tnp_res_|o);
FR f ;] . exponent = FP_| NTEGER EXP;
FR[ f].sign = FP_SI GN_PCSI Tl VE;

fp_update fpsr(sf, tnp_fp_env);
fp_update_psr(f,);
if (fp_raise_traps(tnp_fp_env))
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fp_exception_trap(fp_decode trap(tnp_fp_env));

}
}
FP Exceptions: Invalid Operation (V) Underflow (U)
Denormal/Unnormal Operand (D) Overflow (O)
Software Assist (SWA) fault Inexact (1)

Software Assist (SWA) trap

7-84 IA-64 Application Developer’s Architecture Guide, Rev. 1.0



Inte|® fonmpy

Floating-Point Parallel Negative Multiply

Format: (gp) fpnmpy.sf f; =13, f4 pseudo-op of: (gp) fpnmasf f; =f3, f4,f0

Description:  The pair of products of the pairs of single precision valuesin the significand fields of FR f3 and FR f, are
computed to infinite precision and then negated. The resulting values are then rounded to single precision
using the rounding mode specified by FPSR.sf.rc. The pair of rounded results are stored in the significand
field of FR ;. The exponent field of FR f; is set to the biased exponent for 2.0 (0x1003E) and the sign
field of FR f; is set to positive (0).
If either FR f3 or FRfyisaNaTVal, FR f; isset to NaTVal instead of the computed results.

The mnemonic values for sf are given in Table 7-18 on page 7-31.
The encodings and interpretation for the status fiettése given inTable 5-6 on page 5-7

Operation: See “Floating-Point Parallel Negative Multiply Add” on page 7-83
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Floating-Point Parallel Reciprocal Approximation
Format: (gp) fprcpast fi,p, =15, f3 F6
Description:  If PRgpisO, PR p,iscleared and FR f; remains unchanged.

If PR gpis 1, the following will occur:

e Each half of the significand of FR f; is either set to an approximation (with arelative error < 2888
of the reciprocal of the corresponding half of FR f5, or set to the IEEE-754 mandated response for the
quotient FR fo/FR f5 of the corresponding half — if that half of FfRor of FRf5 is in the set
{-Infinity, -0, +0, +Infinity, NaN}.

* |f either half of FR f, is set to the IEEE-754 mandated quotient, or is set to an approximation of the
reciprocal which may cause the Newton-Raphson iterations to fail to produce the correct | EEE-754
divide result, then PR p, is set to O, otherwise it is set to 1.

For correct | EEE divide results, when PR p, is cleared, user software is expected to compute the
quotient (FR f,/FR f3) for each half (using the non-parallel f r cpa instruction), and merge the results
into FR f;, keeping PR p, cleared.

* Theexponent field of FR f; is set to the biased exponent for 2.0%8 (Ox1003E) and the sign field of FR
f, isset to positive (0).

* |f either FRf, or FRfzisaNaTVal, FR f; isset to NaTVal instead of the computed result, and PR p,
iscleared.

The mnemonic values for sf are given in Table 7-18 on page 7-31.

Operation: if (PRgp]) {
fp_check_target_register(f;);
if (tnp_isrcode = fp_reg_disabled(f;, fo f3z 0))
di sabled fp register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRf;]) || fp_is_natval (FR f3)) {
FR{ f;] = NATVAL;
PR ps = O;
} else {
trmp_defaul t _result_pair = fprcpa_exception_fault_check(f, fg3 sf,
& np_fp_env, & imts_check);

if (fp_raise_fault(tnp_fp_env))
fp_exception_fault(fp_decode fault(tnp_fp_env));

if (fp_is_nan_or_inf(tnp_default_result_pair.hi) || limts_check.hi_fr3) {
tmp_res_hi = fp_single(tnp_default_result_pair.hi);
tnp_pred_hi = 0;
} else {
num = fp_normalize(fp_reg_read_hi(fy));
den = fp_nornalize(fp_reg_read_hi(f3));
if (fp_is_inf(num && fp_is_finite(den)) {
tmp_res = FP_INFINITY;
tnmp_res.sign = numsign " den.sign;
trp_pred_hi = 0;
i

} elseif (fp_is_finite(num && fp_is_inf(den)) {
tmp_res = FP_ZERQ
trp_res.sign = numsign " den.sign;
t mp_pr ed_hi

= 0;

} else if (fp_is_zero(num && fp_is_finite(den)) {
tmp_res = FP_ZERQ
tmp_res.sign = numsign " den.sign;
tnp_pred_hi = 0;

} else {
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tnp_res = fp_ieee_recip(den);
if (limts_check.hi_fr2_or_quot)
tnp_pred_hi = 0;
el se
trp_pred_hi = 1;
}
tmp_res_hi = fp_single(tnp_res);

if (fp_is_nan_or_inf(tnp_default_result_pair.lo) || limts_check.lo_fr3) {
tmp_res_lo = fp_single(tnp_default_result_pair.lo);
tnp_pred_lo = 0;
} else {
num = fp_normalize(fp_reg_read_lo(fy));
den = fp_nornalize(fp_reg_read_lo(f3));
if (fp_is_inf(nun) && fp_is finite(den)) {
tmp_res = FP_INFINITY;
tnp_res.sign = numsign " den.sign;

trmp_pred_lo = 0;

} else if (fp_is_finite(num && fp_is_inf(den)) {
tmp_res = FP_ZERQ
tmp_res.sign = numsign " den.sign;
tmp_pred_lo = 0;

} else if (fp_is_zero(num && fp_is_finite(den)) {
tnp_res = FP_ZERQ

tmp_res.sign = numsign " den.sign;
tnp_pred_lo = 0;
} else {
tnp_res = fp_ieee_reci p(den);
if (limts_check.lo_fr2_or_quot)
tnp_pred_lo = O;
el se
tnp_pred_lo = 1;
}
tnp_res_lo = fp_single(tnmp_res);
}

FR{f;].significand = fp_concatenate(tnp_res_hi, tnp_res_|lo);
FR f ;] . exponent = FP_| NTEGER EXP;

FR{ f4].sign = FP_SI GN_POSI Tl VE

PRI pJ = tnp_pred_hi && tnp_pred_| o;

fp_update fpsr(sf, tnp_fp_env);

}

fp_update_psr(f,);
} else {

PRI ps = 0;

FP Exceptions: Invalid Operation (V)
Zero Divide (2)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault
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Floating-Point Parallel Reciprocal Square Root Approximation
Format: (gp) fprsortasf fq,po =f3
Description:  If PRgpisO, PR p,iscleared and FR f; remains unchanged.

If PR gpis 1, the following will occur:

e Each half of the significand of FR f; is either set to an approximation (with arelative error < 28831
of the reciprocal square root of the corresponding half of FR f5, or set to the IEEE-754 compliant
response for the reciprocal square root of the corresponding half of FR f; — if that half of FRf5is in

the set {-Infinity, -Finite, -0, +0, +Infinity, NaN}.

* |f either half of FR f, is set to the IEEE-754 mandated reciprocal square root, or is set to an
approximation of the reciprocal square root which may cause the Newton-Raphson iterations to fail
to produce the correct | EEE-754 square root result, then PR p, is set to 0, otherwise it is set to 1.

For correct |EEE square root results, when PR p, is cleared, user software is expected to compute the
square root for each half (using the non-parallel f r sqr t a instruction), and merge the resultsin FR f4,

keeping PR p, cleared.

* Theexponent field of FR f; is set to the biased exponent for 2.0%8 (Ox1003E) and the sign field of FR

f, isset to positive (0).

e |f FRfzisaNaTVal, FRf; isset to NaTVal instead of the computed result, and PR p, is cleared.

The mnemonic values for sf are given in Table 7-18 on page 7-31.

Operation: if (PRgp]) {
fp_check_target_register(f;);
if (tnp_isrcode = fp_reg_disabled(f;, fz 0, 0))
di sabled fp register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRf3])) {
FR[ f;] = NATVAL
PR p2]
} else {

0;

trmp_default _result_pair = fprsqrta_exception_fault_check(fs sf,
& nmp_fp_env,

if (fp_raise_fault(tnp_fp_env))
fp_exception_fault(fp_decode fault(tnp_fp_env));

if (fp_is_nan(tnp_default_result_pair.hi)) {
tmp_res_hi = fp_single(tnp_default_result_pair.hi);
trp_pred_hi = 0;
} else {
tmp_fr3 = fp_normalize(fp_reg_read_hi(f3));
if (fp_is_zero(tnmp_fr3)) {
tnp_res = FP_INFINTY;
tnp_res.sign = tnp_fr3.sign;
tnp_pred_hi = 0;
} else if (fp_is_pos_inf(tmp_fr3)) {
tnp_res = FP_ZERQ
t mp_pr ed_hi 0;
} else {
tnp_res = fp_ieee_recip_sqrt(tnp_fr3);
if (limts_check.hi)
tnp_pred_hi = 0;
el se
trp_pred_hi = 1;

}
tnp_res_hi = fp_single(tnmp_res);

&l imts_check);

7-88 IA-64 Application Developer’s Architecture Guide, Rev. 1.0



}

if (fp_is_nan(tnp_default _result _pair.lo)) {

tnp_res_lo = fp_single(tnp_default_result_pair.lo);

tmp_pred_lo = 0;
} else {

tmp_fr3 = fp_normalize(fp_reg_read_lo(fgz));

if (fp_is_zero(tnmp_fr3)) {
tnmp_res = FP_INFINITY;
tnp_res.sign = tnp_fr3.sign;
tnp_pred_lo = 0;

} elseif (fp_is
tnmp_res = FP
tnp_pred_lo = 0;

} else {
tnp_res = fp_ieee_recip_sqrt(tnp_fr3);
if (limts_check.l o)

tmp_pred_lo = 0;
el se
tnp_pred_lo = 1;
}
tnp_res_lo = fp_single(tnmp_res);
}

FR{f;].significand = fp_concatenate(tnp_res_hi,

FR f ;] . exponent = FP_| NTEGER EXP;
FR{ f4].sign = FP_SI GN_POSI Tl VE;
PRI pJ = tnp_pred_hi && tnp_pred_| o;

fp_update fpsr(sf, tnp_fp_env);

}

fp_update_psr(f,);
} else {

PRI p2 = 0;

FP Exceptions: Invalid Operation (V)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault
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Floating-Point Reciprocal Approximation
Format: (gp) frepasf f1, po =1y, fa F6
Description:  If PRgpisO, PR p,iscleared and FR f; remains unchanged.

If PR gpis 1, the following will occur:

* FRf, iseither set to an approximation (with arelative error < 2'8'886) of the reciprocal of FR f3, or to
the |EEE-754 mandated quotient of FR fo/FR f3 — if either FRf, or FRf3 is in the set {-Infinity, -0,
Pseudo-zero, +0, +Infinity, NaN, Unsupported}.

* |f FRf isset to the approximation of the reciprocal of FR f5, then PR p, isset to 1; otherwise, it is set
to 0.

* |If FRf, and FR f5 are such that the approximation of FR f3's reciprocal may cause the
Newton-Raphson iterations to fail to produce the correct IEEE-754 result igffARf5, then a
Floating-point Exception fault for Software Assist occurs.

System software is expected to compute the IEEE-754 quotierfi$/fRf3), return the result in FR
f;, and set PR, to 0.

* |f either FRf, or FRfzisaNaTVal, FR f; isset to NaTVal instead of the computed result, and PR p,
iscleared.

The mnemonic values for sf are given in Table 7-18 on page 7-31.

Operation: if (PR gp]) {
fp_check_target_register(f;);
if (tnp_isrcode = fp_reg_disabled(f; f, f3 0))
di sabl ed_fp_register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRIf;]) || fp_is_natval (FRf3)) {
FR{ f;] = NATVAL;
PRI ps] = 0;
} else {
trp_default _result = frcpa_exception_fault_check(f, f3 sf, &np_fp_env);
if (fp_raise fault(tnp_fp_env))
fp_exception_fault(fp_decode_fault(tnp_fp_env));

if (fp_is_nan_or_inf(tnp_default_result)) {

FRIf;] = tnp_default_result;
PRI ps = 0;
} else {

num = fp_normalize(fp_reg_read(FRf;]));
den = fp_normalize(fp_reg_read(FR f3]));
if (fp_is_inf(nun) && fp_is finite(den)) {

FRIf{ = FP_INFINITY;
FR( f4].sign = numsign " den. sign;
PRI ps] = 0;
} elseif (fp_is_finite(num && fp_is_inf(den)) {
FR ;] = FP_ZE
FR{f4].sign = numsign " den.sign;
PRI p] = 0;
} else if (fp_is_zero(num && fp_is_finite(den)) {
FR ;] = FP_ZERQO
FR[f;].sign = numsign * den.sign;
PRI p2] = 0;
} else {
FR ;] = fp_i eee_recip(den);
PRIp = 1;
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}
fp_update_fpsr(sf, tnp_fp_env);

}

fp_update_psr(fy);
} else {

PRI pj = 0;

/1 fp_ieee_recip()

fp_i eee_reci p(den)
{
const EMuint_t REC P_TABLE[256] = {
0x3fc, 0Ox3f4, O0x3ec, 0x3e4, 0x3dd, 0x3d5, 0x3cd, 0x3c6,
Ox3be, 0x3b7, Ox3af, 0x3a8, 0x3al, 0x399, 0x392, 0x38b,
0x384, 0x37d, 0x376, 0x36f, 0x368, 0x361, 0x35b, 0x354,
0x34d, 0x346, 0x340, 0x339, 0x333, 0x32c, 0x326, 0x320,
0x319, 0x313, 0x30d, 0x307, 0x300, Ox2fa, 0x2f4, Ox2ee,
0x2e8, 0x2e2, 0x2dc, 0x2d7, 0x2dl1l, O0x2ch, 0x2c5, O0x2bf,
Ox2ba, 0x2b4, Ox2af, 0x2a9, 0x2a3, 0x29e, 0x299, 0x293,
0x28e, 0x288, 0x283, 0x27e, 0x279, 0x273, 0x26e, 0x269,
0x264, 0x25f, O0x25a, 0x255, 0x250, 0x24b, 0x246, 0x241
0x23c, 0x237, 0x232, 0x22e, 0x229, 0x224, 0x21f, 0x21b
0x216, 0x211, 0x20d, 0x208, 0x204, Ox1ff, Oxifb, Ox1f6,
0Ox1f 2, Oxled, 0Ox1le9, Oxleb5, 0x1leO, Oxldc, 0x1d8, 0x1d4,
Ox1cf, Oxlcb, Ox1c7, Ox1c3, Ox1bf, Oxlbb, O0x1b6, 0x1b2
Oxlae, Oxlaa, Oxla6, Oxla2, Ox19e, O0x19a, 0x197, 0x193,
0x18f, 0x18b, 0x187, 0x183, 0x17f, Ox17c, 0x178, 0x174,
O0x171, Ox16d, 0x169, 0x166, 0x162, 0Ox1l5e, 0x15b, 0x157,
0x154, 0x150, 0x14d, 0x149, 0x146, 0x142, 0x13f, 0x13b,
0x138, 0x134, 0x131, Ox12e, 0x12a, 0x127, 0x124, 0x120,
Ox11d, Ox1la, O0x117, 0x113, 0x110, 0x10d, Ox10a, 0x107,
0x103, 0x100, O0xOfd, OxOfa, OxOf7, OxOf4, OxO0f1, OxOee,
0x0eb, 0x0e8, 0x0e5, 0x0e2, 0x0df, 0xOdc, 0x0d9, 0x0d6
0x0d3, 0x0dO0, 0xOcd, OxOca, 0x0c8, 0x0c5, 0x0c2, OxO0bf,
0x0bc, 0x0b9, 0x0b7, O0x0b4, 0x0Obl, Ox0Oae, Ox0Oac, 0x0a9,
0x0a6, O0x0a4, Ox0al, 0x09e, 0x09c, 0x099, 0x096, 0x094,
0x091, 0x08e, 0x08c, 0x089, 0x087, 0x084, 0x082, 0x07f,
0x07c, 0x07a, 0x077, 0x075, 0x073, 0x070, 0x06e, 0x06b,
0x069, 0x066, 0x064, 0x061, 0xO05f, 0x05d, 0x05a, 0x058,
0x056, 0x053, 0x051, 0x04f, 0Ox04c, 0x04a, 0x048, 0x045,
0x043, 0x041, 0x03f, 0x03c, 0x03a, 0x038, 0x036, 0x033,
0x031, 0x02f, 0x02d, 0x02b, 0x029, 0x026, 0x024, 0x022
0x020, Ox0le, 0x01c, Ox0la, 0x018, 0x015, 0x013, 0x011
0x00f, 0x00d, 0x00b, 0x009, 0x007, 0x005, 0x003, 0x001

}s

tnp_i ndex = den. si gni fi cand{62: 55};

tnp_res.significand = (1 << 63) | (RECI P_TABLE tnp_i ndex] << 53);
tnp_res. exponent = FP_REG EXP_QONES - 2 - den. exponent;
tnp_res.sign = den.sign

return (tnp_res);

}

FP Exceptions: Invalid Operation (V)
Zero Divide (2)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault
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Floating-Point Reciprocal Square Root Approximation
Format: (gp) frsgrtasf fq, p, =13 F7
Description:  If PRgpisO, PR p,iscleared and FR f; remains unchanged.

If PR gpis 1, the following will occur:

* FRf, iseither set to an approximation (with arelative error < 2883%) of the reciprocal square root of
FR f3, or set to the |IEEE-754 mandated squareroot of FR f; — if FR f5 is in the set {-Infinity, -Finite,
-0, Pseudo-zero, +0, +Infinity, NaN, Unsupported}.

* |f FRf; isset to an approximation of the reciprocal square root of FR f3, then PR p, isset to 1;
otherwise, itisset to 0.

* |f FRf3issuch the approximation of its reciprocal square root may cause the Newton-Raphson
iterations to fail to produce the correct |EEE-754 square root result, then a Floating-point Exception
fault for Software Assist occurs.

System software is expected to compute the IEEE-754 square root, return the result in FR f;, and set
PRp,t00.

* If FRfzisaNaTVa, FRf; isset to NaTVal instead of the computed result, and PR p, is cleared.
The mnemonic values for sf are given in Table 7-18 on page 7-31.

Operation: if (PR gp]) {
fp_check_target_register(f;);
if (tnp_isrcode = fp_reg_disabled(f;, f3 0, 0))
di sabl ed_fp_register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRf3)) {
FR[ f;] = NATVAL;
PRI ps] = 0;
} else {
trp_defaul t _result = frsqrta_exception_fault_check(fs sf, & np_fp_env);
if (fp_raise_fault(tnp_fp_env))
fp_exception_fault(fp_decode fault(tnp_fp_env));

if (fp_is_nan(tnp_default _result)) {
FRIf;] = tnp_default_result;
PRI ps] = 0;
} else {
tmp_fr3 = fp_normalize(fp_reg_read(FR f3]));
if (fp_is_zero(tnmp_fr3)) {
FRIf; = tnp_fr3;

PRI ps = 0;

} else if (fp_is_pos_inf(tmp_fr3)) {
FRIf4 = tnp_fr3;
PRI ps = 0;

} else {
FRIf;] = fp_ieee_recip_sqrt(tnmp_fr3);
PRIps = 1;

}
}
fp_update fpsr(sf, tnp_fp_env);
}
fp_update_psr(f,);

} else {
PRI ps = 0;
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/1 fp_ieee recip_sqrt()

fp_ieee_recip_sqrt(root)
{
const EM uint_t RECH P_SQRT_TABLE[ 256] = {
Oxlab, Ox1a0, 0x19a, 0x195, 0x18f, 0x18a, 0x185, 0x180,
Ox17a, 0x175, 0x170, Ox16b, 0x166, 0x161, 0x15d, 0x158,
0x153, Ox14e, Oxl1l4a, 0x145, 0x140, O0x13c, 0x138, 0x133,
0Ox12f, 0x12a, 0x126, 0x122, Oxl1lle, Oxlla, 0x115, O0x111,
0x10d, 0x109, 0x105, 0x101, Ox0fd, OxOfa, Ox0f6, O0xOf2,
Ox0ee, Ox0Oea, 0x0e7, 0x0e3, 0x0df, O0x0dc, 0x0d8, 0x0d5
0x0d1l, 0xOce, 0OxOca, 0xOc7, 0x0c3, 0x0cO, 0xO0bd, 0x0b9
0x0b6, 0x0b3, 0x0b0O, Ox0ad, 0x0a9, 0x0a6, 0x0a3, 0x0a0,
0x09d, 0x09a, 0x097, 0x094, 0x091, 0x08e, 0x08b, 0x088,
0x085, 0x082, O0x07f, 0x07d, Ox07a, 0x077, 0x074, 0x071,
0x06f, 0x06c, 0x069, 0x067, 0x064, 0x061, 0x05f, 0x05c,
0x05a, 0x057, 0x054, 0x052, 0x04f, 0x04d, 0x04a, 0x048,
0x045, 0x043, 0x041, 0x03e, 0x03c, 0x03a, 0x037, 0x035,
0x033, 0x030, 0x02e, 0x02c, 0x029, 0x027, 0x025, 0x023,
0x020, OxOle, Ox0lc, Ox0Ola, 0x018, 0x016, 0x014, 0x011,
0x00f, 0x00d, 0x00b, 0x009, 0x007, 0x005, 0x003, 0x001
0x3fc, Ox3f4, 0x3ec, 0x3e5, 0x3dd, 0x3d5, Ox3ce, 0x3c7,
Ox3bf, 0x3b8, 0x3bl, Ox3aa, 0x3a3, 0x39c, 0x395, 0x38e,
0x388, 0x381, 0x37a, 0x374, 0x36d, 0x367, 0x361, 0x35a,
0x354, 0x34e, 0x348, 0x342, 0x33c, 0x336, 0x330, 0x32b,
0x325, 0x31f, 0Ox3la, 0x314, 0x30f, 0x309, 0x304, Ox2fe,
0x2f 9, Ox2f4, Ox2ee, 0x2e9, 0x2e4, 0x2df, O0x2da, 0x2d5,
0x2d0, Ox2ch, 0x2c6, 0x2cl, 0x2bd, 0x2b8, 0x2b3, O0x2ae,
Ox2aa, 0x2ab5, 0Ox2al, 0x29c, 0x298, 0x293, 0x28f, 0x28a,
0x286, 0x282, 0x27d, 0x279, 0x275, 0x271, 0x26d, 0x268,
0x264, 0x260, 0x25c, 0x258, 0x254, 0x250, 0x24c, 0x249
0x245, 0x241, 0x23d, 0x239, 0x235, 0x232, 0x22e, 0x22a,
0x227, 0x223, 0x220, 0x21c, 0x218, 0x215, 0x211, 0x20e,
0x20a, 0x207, 0x204, 0x200, Oxifd, Ox1f9, O0xif6, Ox1f3,
Ox1f 0, Oxlec, 0Ox1le9, Oxle6, 0xle3, Ox1ldf, Oxldc, 0x1d9
0x1d6, 0x1d3, 0x1dO, Oxlcd, Oxlca, Oxlc7, Oxl1lc4, Oxlcl
Oxlbe, Ox1bb, 0x1b8, 0x1b5, 0x1b2, Oxlaf, Oxlac, Oxlaa,

}s

tp_i ndex = (root.exponent{0} << 7) | root.significand{62:56};
tnp_res.significand = (1 << 63) | (RECI P_SQRT_TABLE[tnp_i ndex] << 53)
tnp_res. exponent = FP_REG EXP_HALF - ((root.exponent - FP_REG BIAS) >> 1)
tnp_res.sign = FP_SI GN_PCsSI Tl VE;

return (tnp_res);

FP Exceptions: Invalid Operation (V)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault
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intel.

Floating-Point Select

Format:

Description:

Operation:

(qp) fselect fl = f3, f4, f2 F3

The significand field of FR f5islogically AND-ed with the significand field of FR f, and the significand
field of FR f, is logically AND-ed with the one’s complement of the significand field of f=Rhe two
results are logically OR-ed together. The result is placed in the significand fieldfof FR

The exponent field of FR is set to the biased exponent for%8 (x1003E). The sign bit field of FRis
set to positive (0).

If any of FRf3, FRf,, or FRf, is a NaTVal, FR; is set to NaTVal instead of the computed result.

it (PRgp]) {
fp_check_target_register(f;);
if (tnp_isrcode = fp_reg_disabled(f;, f, f3 fyg))
di sabl ed_fp_register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRIf;]) || fp_is_natval (FR f3]) || fp_is_natval (FR[f,)) {
FR{ f;] = NATVAL;
} else {
FRIf;].significand = (FRfg.significand & FR[f/].significand)
| (FRIf,.significand & ~FR f;]. significand);
FR f ;] . exponent = FP_| NTEGER EXP;
FR f;].sign = FP_SI GN _POSI Tl VE

}
fp_update_psr(f,);

FP Exceptions: None
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Floating-Point Set Controls
Format: (gp) fsetc.sf amask?, omask? F12

Description:  The status field’s control bits are initialized to the value obtained by logically AND-ing the sf0.controls
andamask7 immediate field and logically OR-ing tlwenask7 immediate field.

The mnemonic values faf are given infable 7-18 on page 7-31

Operation: if (PR gp]) {
tmp_controls = (AR FPSR] . sf0.control s & anask?7) | onask?7,
if (is_reserved_fiel d(FSETC, sf, tnp_controls))
reserved_register field fault();
fp_set_sf _control s(sf, tnp_controls);

}

FP Exceptions: None
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Floating-Point Subtract

Format: (gp) fsub.pc.sf f; =13, 1, pseudo-op of: (gp) fms.pc.sf f; =13, f1, f,

Description:  FR f, is subtracted from FR f5 (computed to infinite precision), rounded to the precision indicated by pc
(and possibly FPSR.sf.pc and FPSR.sf.wre) using the rounding mode specified by FPSR.sf.rc, and placed
in FRf;.
If either FR f3 or FR f,isaNaTVal, FR f; is set to NaTVal instead of the computed result.
The mnemonic values for the opcodptsare given infable 7-17 on page 7-3The mnemonic values for
sf are given iffable 7-18 on page 7-3For the encodings and interpretation of the status fiptd'sre,
andrc, refer toTable 5-5andTable 5-6 on page 5:7

Operation: See “Floating-Point Multiply Subtract” on page 7-56
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Floating-Point Swap

Format: (gp) fswap fi =1, f3 swap_form Fo
(gp) fswap.nl f; =1y, f3 swap_nl_form Fo
(ap) fswap.nr f; =1y, f3 swap_nr_form F9

Description:  For the swap_form, the |eft single precision value in FR f, is concatenated with the right single precision
value in FR f3. The concatenated pair is then swapped.

For the swap_nl_form, theleft single precision value in FR f, is concatenated with the right single
precision value in FR f5. The concatenated pair is then swapped, and the |eft single precision valueis
negated.

For the swap_nr_form, the left single precision value in FR f, is concatenated with the right single
precision value in FR f5. The concatenated pair is then swapped, and the right single precision valueis
negated.

For all forms, the exponent field of FR f; is set to the biased exponent for 2.0%3 (0x1003E) and the sign
field of FR fy is set to positive (0).

For al forms, if either FR f, or FR fzisaNaTVal, FR f; is set to NaTVal instead of the computed result.

Figure 7-17. Floating-point Swap

63 32 31 0

63 ¢ 3231 0
1

Figure 7-18. Floating-point Swap Negate Left or Right

63 62 32 3130 0

negate left
negate right 9 f3

63 62 f 323130 0
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Operation: if (PREgp]) {
fp_check_target_register(f;);
if (tnp_isrcode = fp_reg_disabled(f; fo f3 0))
di sabled fp register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRIf5]) || fp_is_natval (FRf3])) {
FR ;] = NATVAL;
} else {
if (swap_form {
tmp_res_hi = FR f3].significand{31:0};
tmp_res_lo = FR f,]. significand{63:32};
} else if (swap_nl _forn {
tnp_res_hi = (!FR f3].significand{31} << 31)
| (FRfg].significand{30:0});
tmp_res_lo = FR f,]. significand{63:32};
} else { // swap_nr_form
tmp_res_hi = FR{ f3]. significand{31:0};
tnp_res_lo = (!FR f,].significand{63} << 31)
| (FRf].significand{62:32});
}

FR{f;].significand = fp_concatenate(tnp_res_hi, tnp_res_|lo0);
FR f ;] . exponent = FP_| NTEGER EXP;
FR{ f4].sign = FP_SI GN_POSI Tl VE

}

fp_update_psr(f,);

FP Exceptions: None
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Floating-Point Sign Extend

Format: (gp) fsxt.l fq =15, f3 sxt_|_form Fo
(gp) fsxtr fy =1, f3 sxt_r_form Fo

Description:  For the sxt_|_form (sxt_r_form), the sign of the left (right) single precision valuein FR f, is extended to

32-bits and is concatenated with the left (right) single precision valuein FR f5.

For all forms, the exponent field of FR f; is set to the biased exponent for 2.0%3 (0x1003E) and the sign
field of FR f; is set to positive (0).

For all forms, if either FR f, or FR fzisaNaTVal, FR f; is set to NaTVal instead of the computed result.

Figure 7-19. Floating-point Sign Extend Left

Figure 7-20. Floating-point Sign Extend Right

Operation:

63 32 63 32

f f3
63 3231 0

31 0 31 0
f f3
63 3231 0
if (PRgp]) {

fp_check_target_register(f;);
if (tnp_isrcode = fp_reg_disabled(f; f, f3 0))
di sabled_fp_register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRf;]) || fp_is_natval (FR f3)) {
FR{ f;] = NATVAL;

} else {
if (sxt_| _form {
tmp_res_hi = (FR{f/].significand{63} ? OxFFFFFFFF : 0x00000000);
tmp_res_lo = FR f3].significand{63: 32};

} else { /1 sxt_r _form
tmp_res_hi (FR(f ] .significand{31} ? OxFFFFFFFF : 0x00000000);
tmp_res_lo = FR f3]. significand{31: 0};

}

FRIf;].significand = fp_concatenate(tnp_res_hi, tnp_res_|lo0);
FR[ f 1] . exponent = FP_| NTEGER _EXP;
FR{ f4].sign = FP_SI GN_POSI Tl VE

}

fp_update_psr(f,);

FP Exceptions: None
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intel.

Floating-Point Exclusive Or

Format:

Description:

Operation:

(ap) fxor f;=f,, fg F9

The bit-wise logical exclusive-OR of the significand fields of FR f, and FR f5 is computed. The resulting
vaueis stored in the significand field of FR f;. The exponent field of FR f; is set to the biased exponent
for 2.0%% (0x1003E) and the sign field of FR f; is set to positive (0).

If either of FR f, or FR fzisaNaTVal, FR f; is set to NaTVal instead of the computed result.

if (PRIgp]) {
fp_check_target_register(f;);
if (tnp_isrcode = fp_reg_disabled(f;, fo f3z 0))
di sabled fp register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRf;]) || fp_is_natval (FR f3)) {
FR{ f;] = NATVAL;
} else {
FR{ f4].significand = FR{ f,].significand » FR f3].significand;
FR f ;] . exponent = FP_| NTEGER EXP;
FR f;].sign = FP_SI GN _POSI Tl VE

fp_update_psr(f,);

FP Exceptions: None
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Get Floating-Point Value or Exponent or Significand

Format: (ap) getf.s ry=f, single form
(ap) getf.d ry=1 double_form
(ap) getf.exp ry=f, exponent_form
(ap) getf.sig ry="f, significand_form

getf

M19
M19
M19
M19

Description:  In the single and double forms, the value in FR f, is converted into a single precision (single_form) or
double precision (double_form) memory representation and placed in GR r4. In the single_form, the

most-significant 32 bitsof GR r4 are set to O.

In the exponent_form, the exponent field of FR f, is copied to bits 16:0 of GR r, and the sign hit of the

valuein FR f, is copied to bit 17 of GR r4. The most-significant 46-bits of GR r, are set to zero.

Figure 7-21. Function of getf.exp

FRf, |s| exponent significand
I
63 18yi6 §y O
GRr; 0
46 1 17

In the significand_form, the significand field of the valuein FR f, is copied to GR ry

Figure 7-22. Function of getf.sig

FR f, |s|exponent significand
63 ; 0

64

Ger

For al forms, if FR f, contains aNaT Val, then the NaT bit corresponding to GRr4 isset to 1.
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Operation:

7-102

if (PRIgp]) {
check_target_register(ry);
if (tnp_isrcode = fp_reg_disabled(f, 0, 0, 0))
di sabled fp register_fault(tnp_isrcode, 0);

if (single_fornm {
R r {31:0} = fp_fr_to nmemformat(FR f;], 4, 0);
CGRrq{63:32} = 0;
} else if (double_fornm {
GRrg =fp_fr_to_memformat(FR f,], 8, 0);
} else if (exponent_form {
R r {63:18} = 0;
R r {16:0} = FR f,].exponent;
R r]{17) = FR7;] sign;
} else /] significand form
R r;] = FR f,].significand,
if (fp_is_natval (FRf;]))

R rq.nat = 1,
el se
R r ] .nat = 0;
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Invalidate ALAT

Format:

Description:

Operation:

invala
(gp) invaa complete form M24
(gp) invalae ry gr_form, entry_form M26
(gp) invalae f; fr_form, entry_form mM27

The selected entry or entriesin the ALAT are invalidated.

In the complete form, all ALAT entries are invalidated. In the entry_form, the ALAT is queried using the
general register specifier rq (gr_form), or the floating-point register specifier f; (fr_form), and if any
ALAT entry matches, it isinvalidated.

if (PR gp]) {
if (conplete_form
al at _inval ();
else { // entry_form
if (gr_form
al at _inval _si ngl e_entry( GENERAL, r);
else // fr_form
al at _i nval _si ngl e_entry(FLQOAT, f;);
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Load

Format: (gp) Idsz.ldtypeldhint rq =[rg] no_base update form M1
(gp) Idszldtype.ldhint rq =[r3], o reg_base update form M2
(gp) Idsz.ldtype.ldhint rq =[r3], immg imm_base _update form M3
(gp) Id8.fill.Idhint rq =[r4] fill_form, no_base update form M1
(gp) Id8.fill.ldhint rq =[r3], ro fill_form, reg_base update form M2
(gp) Id8.fill.ldnhint rq = [r3], immg fill_form, imm_base update form M3

Description: A value consisting of sz bytesis read from memory starting at the address specified by the valuein GRr5.
The value is then zero extended and placed in GR r4. The values of the sz completer are givenin
Table 7-26. The NaT bit corresponding to GR r is cleared, except as described below for speculative
loads. The Idtype completer specifies specia |oad operations, which are described in Table 7-27.

For the fill_form, an 8-byte value isloaded, and a bit in the UNAT application register is copied into the
target register NaT hit. Thisinstruction is used for reloading a spilled register/NaT pair. See “Control
Speculation” on page 4-1f8r details.

In the base update forms, the value in1G# added to either a signed immediate vaioeng) or a value
from GRr5, and the result is placed back in GRThis base register update is done after the load, and
does not affect the load address. In the reg_base_update_form, if the NaT bit correspondingiso GR
set, then the NaT bit corresponding to GRS set and no fault is raised.

Table 7-26. sz Completers

sz Completer Bytes Accessed
1 1 byte
2 2 bytes
4 4 bytes
8 8 bytes

Table 7-27. Load Types

Idtype

Completer Interpretation Special Load Operation

none Normal load

S Speculative load | Certain exceptions may be deferred rather than generating a fault. Deferral
causes the target register’s NaT bit to be set. The NaT bit is later used to
detect deferral.

a Advanced load An entry is added to the ALAT. This allows later instructions to check for
colliding stores. If the referenced data page has a non-speculative attribute,
the target register and NaT bit is cleared, and the processor ensures that no
ALAT entry exists for the target register. The absence of an ALAT entry is later
used to detect deferral or collision.

sa Speculative An entry is added to the ALAT, and certain exceptions may be deferred.
Advanced load Deferral causes the target register’s NaT bit to be set, and the processor
ensures that no ALAT entry exists for the target register. The absence of an
ALAT entry is later used to detect deferral or collision.

c.nc Check load The ALAT is searched for a matching entry. If found, no load is done and the
- no clear target register is unchanged. Regardless of ALAT hit or miss, base register
updates are performed, if specified. An implementation may optionally cause
the ALAT lookup to fail independent of whether an ALAT entry matches. If not
found, a load is performed, and an entry is added to the ALAT (unless the
referenced data page has a non-speculative attribute, in which case no ALAT
entry is allocated).
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Table 7-27. Load Types (Cont'd)

Idtype . . )
Completer Interpretation Special Load Operation
c.clr Check load The ALAT is searched for a matching entry. If found, the entry is removed, no
- clear load is done and the target register is unchanged. Regardless of ALAT hit or
miss, base register updates are performed, if specified. An implementation
may optionally cause the ALAT lookup to fail independent of whether an ALAT
entry matches. If not found, a clear check load behaves like a normal load.
c.clr.acq Ordered check This type behaves the same as the unordered clear form, except that the ALAT
load — clear lookup (and resulting load, if no ALAT entry is found) is performed with acquire
semantics.
acq Ordered load An ordered load is performed with acquire semantics.
bias Biased load A hint is provided to the implementation to acquire exclusive ownership of the
accessed cache line.

For more details on ordered, biased, speculative, advanced and check loads see “Control Speculation” on
page 4-13and“Data Speculation” on page 4-16or more details on ordered loads ‘§demory Access
Ordering” on page 4-235ee&‘Memory Hierarchy Control and Consistency” on page 4&tQetails on
biased loads.

For the non-speculative load types, if NaT bit associated with;GR1, a Register NaT Consumption
fault is taken. For speculative and speculative advanced loads, no fault is raised, and the exception is
deferred. For the base-update calculation, if the NaT bit associated withi&SR the NaT bit associated
with GRr3is set to 1 and no fault is raised.

The value of thédhint completer specifies the locality of the memory access. The valuesldhithte
completer are given iable 7-28 A prefetch hint is implied in the base update forms. The address
specified by the value in GR after the base update acts as a hint to prefetch the indicated cache line. This
prefetch uses the locality hints specifieddlyint. Prefetch and locality hints do not affect program
functionality and may be ignored by the implementation.“Stamory Hierarchy Control and

Consistency” on page 4-20r details.

Table 7-28. Load Hints

Idhint Completer Interpretation
none Temporal locality, level 1
ntl No temporal locality, level 1
nta No temporal locality, all levels

In the no_base_update form, the value intgi® not modified and no prefetch hint is implied.

For the base update forms, specifying the same register addreasdhn; will cause an Illegal Operation
fault.
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Operation: if (PREgp]) {
size = fill _form? 8 : sz
specul ative = (/dtype=="s"| | dt ype == 'sa’);
advanced=( [/dtype=="a|| | dt ype =='sa’);
check_clear = ( | dt ype=="c.clr || | dt ype == ‘c.clr.acq);
check _no_clear = ( | dt ype ==‘c.nc’);
check = check_clear || check_no_clear;
acquire = ( I dt ype =="acq’ || | dt ype =="‘c.clr.acq’);

bias=( [/ dtype=="bias’) ? BIAS:0;

itype = READ;
if (speculative) itype |= SPEC ;
if (advanced)itype |= ADVANCE ;

if ((reg_base_update_form || imm_base_update_form) && ( r{== rjz))
illegal_operation_fault();

check_target_register( r 1, itype);

if (reg_base_update_form || imm_base_update_form)
check_target_register( r3);

if (reg_base_update_form) {
tmp_r2=GR[ r];
tmp_r2nat=GR[ r.nat;
}

if ('speculative && GR[ r g].nat) // fault on NaT address
register_nat_consumption_fault(itype);
defer = speculative && (GR[ r gl.nat || PSR.ed);// defer exception if spec

if (check && alat_cmp(GENERAL, r o /I no load on Id.c & ALAT hit
if (check_clear) /I remove entry on Id.c.clr or Id.c.clr.acq
alat_inval_single_entry(GENERAL, ro);
}else{
if (Idefer) {
paddr = tlb_translate(GR[ r 3], size, itype, PSR.cpl, &maittr,
&defer);
if (Idefer) {
otype = acquire ? ACQUIRE : UNORDERED;
val = mem_read(paddr, size, UM.be, mattr, otype, bias | | dhi nt);

}

if (check_clear || advanced) /I remove any old ALAT entry
alat_inval_single_entry(GENERAL, ro);
if (defer) {
if (speculative) {
GR{r 4] = natd_gr_read(paddr, size, UM.be, mattr, otype,
bias | I dhi nt);
GR[r j].nat=1;

}else {
GR[r4=0; //'ld.a to sequential memory
GR[r 4].nat = 0;

}else{ /I execute load normally

if (fill_form) { /I fill NaT on ld8.fill
bit_pos=GR[ r3|{8:3};
GR([r 4] = val
GR(r ;].nat = AR[UNAT]{bit_pos},

}else { /I clear NaT on other types

GR(r 4] = zero_ext(val, size * 8);
GR[r 4].nat = 0;
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if ((check_no_clear || advanced) && ma_is_specul ative(nattr))
/1l add entry to ALAT
al at _write(GENERAL, r; paddr, size);

}

if (immbase update form { /1 update base register
Rrg = GRrg + sign_ext(imm, 9);
GRrg.nat = GRrg.nat;
} else if (reg_base update form {
CRrg = Crg +tnp_rz;
GRrgl.nat = GR[rg.nat || tnp_r2nat;
}

if ((reg_base update_form || inmbase update_forn) &% !GRr3].nat)
mem.inplicit_prefetch(GRrz, bias | /dhint);

IA-64 Application Developer’s Architecture Guide, Rev. 1.0 7-107



ldf

intel.

Floating-Point Load

Format:

Description:

(gp) Idffsz.fldtype.ldhint f; =[rg] no_base update form M6
(gp) Idffsz.fldtype.ldhint f; =[r3], o reg_base update form M7
(gp) Idffszfldtypeldhint f; =[rs], immg imm_base _update form M8
(gp) Idf8.fldtype.ldhint f; =[r3] integer_form, no_base update form M6
(gp) Idf8.fldtype.ldhint f; =[r3], ro integer_form, reg_base update form M7
(gp) Idf8.fldtype.ldhint f; = [r3], immg integer_form, imm_base update form M8
(gp) Idf fill.ldhint f; =[r3] fill_form, no_base update form M6
(gp) Idf fill.ldhint f; =[rg], ry fill_form, reg_base update form M7
(gp) Idf.fill.ldhint f; =[r3], immg fill_form, imm_base update form M8

A value consisting of fsz bytesisread from memory starting at the address specified by thevaluein GRr5.
The value is then converted into the floating-point register format and placed in FR f;. See “Data Types
and Formats” on page 5far details on conversion to floating-point register format. The values édzthe
completer are given ifable 7-29 Thefldtype completer specifies special load operations, which are
described ifrable 7-30

For the integer_form, an 8-byte value is loaded and placed in the significand field;oivfRout
conversion. The exponent field of FRis set to the biased exponent for%.(Mx1003E) and the sign
field of FRf, is set to positive (0).

For the fill_form, a 16-byte value is loaded, and the appropriate fields are placed,iwirut
conversion. This instruction is used for reloading a spilled registefCae¢rol Speculation” on
page 4-13For details.

In the base update forms, the value in1GR added to either a signed immediate valoeng) or a value
from GRr,, and the result is placed back in &RThis base register update is done after the load, and
does not affect the load address. In the reg_base_update_form, if the NaT bit correspondingiso GR
set, then the NaT bit corresponding to GRS set and no fault is raised.

Table 7-29. fsz Completers

fsz Completer Bytes Accessed Memory Format
S 4 bytes Single precision
d 8 bytes Double precision
e 10 bytes Extended precision

Table 7-30. FP Load Types

7-108

fldtype . . .
Completer Interpretation Special Load Operation
none Normal load
s Speculative load | Certain exceptions may be deferred rather than generating a fault. Deferral
causes NaTVal to be placed in the target register. The NaTVal value is later
used to detect deferral.
a Advanced load An entry is added to the ALAT. This allows later instructions to check for

colliding stores. If the referenced data page has a non-speculative attribute,
no ALAT entry is added to the ALAT and the target register is set as follows:
for the integer_form, the exponent is set to 0x1003E and the sign and
significand are set to zero; for all other forms, the sign, exponent and
significand are set to zero. The absence of an ALAT entry is later used to
detect deferral or collision.
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Table 7-30. FP Load Types (Cont'd)

fldtype

Completer Interpretation Special Load Operation

sa Speculative An entry is added to the ALAT, and certain exceptions may be deferred.
Advanced load Deferral causes NaTVal to be placed in the target register, and the processor
ensures that no ALAT entry exists for the target register. The absence of an
ALAT entry is later used to detect deferral or collision.

c.nc Check load - The ALAT is searched for a matching entry. If found, no load is done and the
no clear target register is unchanged. Regardless of ALAT hit or miss, base register
updates are performed, if specified. An implementation may optionally cause
the ALAT lookup to fail independent of whether an ALAT entry matches. If not
found, a load is performed, and an entry is added to the ALAT (unless the
referenced data page has a non-speculative attribute, in which case no ALAT
entry is allocated).

c.clr Check load — clear | The ALAT is searched for a matching entry. If found, the entry is removed, no
load is done and the target register is unchanged. Regardless of ALAT hit or
miss, base register updates are performed, if specified. An implementation
may optionally cause the ALAT lookup to fail independent of whether an ALAT
entry matches. If not found, a clear check load behaves like a normal load.

For more details on speculative, advanced and check loads see “Control Speculation” on page 4-¥&d
“Data Speculation” on page 4-16

For the non-speculative load types, if NaT bit associated withy@&RL, a Register NaT Consumption
fault is taken. For speculative and speculative advanced loads, no fault is raised, and the exception is
deferred. For the base-update calculation, if the NaT bit associated withi&R the NaT bit associated
with GRr3is set to 1 and no fault is raised.

The value of thédhint modifier specifies the locality of the memory access. The mnemonic values of
Idhint are given irfable 7-28 on page 7-108 prefetch hint is implied in the base update forms. The
address specified by the value in GRafter the base update acts as a hint to prefetch the indicated cache
line. This prefetch uses the locality hints specifieddynt. Prefetch and locality hints do not affect
program functionality and may be ignored by the implementation:Nsemory Hierarchy Control and
Consistency” on page 4-Z0r details.

In the no_base_update form, the value intgRR not modified and no prefetch hint is implied.

The PSR.mfl and PSR.mfh bits are updated to reflect the modification fagf FR
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Operation:
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if (PRgp]) {
size = (fill_form? 16 : (integer_form? 8 : fsz2));
specul ative = (fldtype=="5|| fldtype =="'sa);
advanced = ( f/ dt ype=="a’|| fl dt ype =="'sa’);
check_clear = ( fldtype=="cclr');
check_no_clear = ( fl dt ype ==‘c.nc’);

check = check_clear || check_no_clear;
itype = READ;

if (speculative) itype |= SPEC ;

if (advanced) itype |= ADVANCE ;

if (reg_base_update_form || imm_base_update_form)

check_target_register( r3);
fp_check_target_register( f o)
if (tmp_isrcode = fp_reg_disabled( f1,0,0,0))
disabled_fp_register_fault(tmp_isrcode, itype);
if ('speculative && GR[ r 3].nat) // fault on NaT address
register_nat_consumption_fault(itype);
defer = speculative && (GR[ r gl.nat || PSR.ed);// defer exception if spec
if (check && alat_cmp(FLOAT, f){ // o load on Idf.c & ALAT hit
if (check_clear) I/l remove entry on Idf.c.clr
alat_inval_single_entry(FLOAT, f o)
}else{
if ('defer) {
paddr = tlb_translate(GR[ r 3], size, itype, PSR.cpl, &maittr,
&defer);
if (\defer)
val = mem_read(paddr, size, UM.be, mattr, UNORDERED, | dhi nt);
if (check_clear || advanced) /I remove any old ALAT entry
alat_inval_single_entry(FLOAT, f o)
if (speculative && defer) {

FR[f ;] = NATVAL;

} else if (advanced && !speculative && defer) {
FR[f 4] = (integer_form ? FP_INT_ZERO : FP_ZERO);

}else{ /I execute load normally
FR[f ;] = fp_mem_to_fr_format(val, size, integer_form);

if ((check_no_clear || advanced) && ma_is_speculative(mattr))
/I add entry to ALAT
alat_write(FLOAT, f 1, paddr, size);

}

if imm_base_update_form) { /I update base register
GR[r g =GR[ r 3]+ sign_ext( i mmy, 9);
GR[rgl.nat=GR[ rgl.nat;
} else if (reg_base_update_form) {
GR[rg =GR[ ra+GR[ rj;
GR[rgl.nat=GR[ rgl.nat|| GR[ r 5].nat;

if ((reg_base_update_form || imm_base_update_form) && !GR[ r z].nat)
mem_implicit_prefetch(GR[ ral, Idhint);

fp_update_psr(  f );
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Floating-Point Load Pair

Format:

Description:

Operation:

Idfp
(gp) Idfps.fidtype.ldhint fq, f, =[r3] single_form, no_base _update_form M11
(gp) Idfps.fldtype.ldhint f;, f, =[r3], 8 single_form, base_update form M12
(gp) Idfpd.fldtype.ldhint fq, f, =[r4] double form, no_base update form M11
(gp) Idfpd.fldtype.ldhint fq, f, =[r4], 16 double form, base update form M12
(gp) Idfp8.fldtype.ldhint fq, f; = [r4] integer_form, no_base update form M11
(gp) Idfp8.fldtype.ldhint fq, f, =[r3], 16 integer_form, base_update_form M12

Eight (single form) or sixteen (double form/integer form) bytes are read from memory starting at the
address specified by the valuein GR r. The value read istreated as a contiguous pair of floating-point
numbers for the single_form/double_form and as integer/Parallel FP data for theinteger_form. Each
number is converted into the floating-point register format. The value at the lowest addressis placed in FR
f1, and the value at the highest addressis placed in FR f,. See “Data Types and Formats” on page %ot
details on conversion to floating-point register format. fitlgpe completer specifies special load
operations, which are describedTable 7-30 on page 7-108

For more details on speculative, advanced and check loatiS@aeol Speculation” on page 4-Ehd
“Data Speculation” on page 4-16

For the non-speculative load types, if NaT bit associated withy@&RL, a Register NaT Consumption
fault is taken. For speculative and speculative advanced loads, no fault is raised, and the exception is
deferred.

In the base_update_form, the value in GG added to an implied immediate value (equal to double the
data size) and the result is placed back inrgRhis base register update is done after the load, and does
not affect the load address.

The value of thédhint modifier specifies the locality of the memory access. The mnemonic values of
Idhint are given irTable 7-28 on page 7-108 prefetch hint is implied in the base update form. The
address specified by the value in Gfafter the base update acts as a hint to prefetch the indicated cache
line. This prefetch uses the locality hints specifieddynt. Prefetch and locality hints do not affect
program functionality and may be ignored by the implementation:Ndemory Hierarchy Control and
Consistency” on page 4-20r details.

In the no_base_update form, the value intgi® not modified and no prefetch hint is implied.
The PSR.mfl and PSR.mfh bits are updated to reflect the modification fpfeffid FRf,.

There is a restriction on the choice of target registers. Register spdgifiadf, must specify one
odd-numbered physical FR and one even-numbered physical FR. Specifying two odd or two even
registers will cause an lllegal Operation fault to be raised. The restriction is on physical register numbers
after register rotation. This means thd indf, both specify static registers or both specify rotating
registers, thefy andf, must be odd/even or even/oddf,lindf, specify one static and one rotating

register, the restriction depends on CFM.rrb.fr. If CEM.rrb.fr is even, the restriction is thef samdf;

must be odd/even or even/odd. If CFM.rrb.fr is odd, theandf, must be even/even or odd/odd.

Specifying one static and one rotating register should only be done when CFM.rrb.fr will have a
predictable value (such as 0).

it (PRgp]) {
size = single form? 8 : 16;

specul ative = (fldtype=="5'|| fldtype =="'sa’);
advanced=( fldtype=="a|| fl dt ype =="'sa’);
check_clear = ( f1dtype=="c.clr),

check_no_clear = ( fl dt ype =="‘c.nc’);

check = check_clear || check_no_clear;
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itype = READ,
if (speculative) itype |= SPEC
i f (advanced) itype | = ADVANCE;

if (fp_reg_bank conflict(f1l, f2))
illegal _operation_fault();

if (base_update form
check_target_register(ry);

fp_check_target_register(f;);
fp_check_target_register(f,);
if (tnp_isrcode = fp_reg_disabled(f;, f, 0, 0))

di sabl ed_fp_register_fault(tnp_isrcode, itype);

if (!speculative & CGR{r3].nat) /1 fault on NaT address
regi ster_nat _consunption_faul t(itype);
defer = speculative & (GRrgl.nat || PSR ed);// defer exception if spec
if (check & al at_cnp(FLOAT, f;)) { /1 no load on Idfp.c & ALAT hit
if (check_clear) // renove entry on Idfp.c.clr
al at _i nval _si ngl e_entry(FLQAT, f,);
} else {
if (!defer) {
paddr = tlb_translate(GRr3, size, itype, PSRcpl, &mttr,
&defer);
if (!defer)

val = nemread(paddr, size, UMbe, mattr, UNORDERED, /dhint);

if (check_clear || advanced) /1 renmove any ol d ALAT entry
al at _i nval _si ngl e_entry(FLQOAT, f,);
if (speculative & defer) {
FR ;] = NATVAL;
FRIf, = NATVAL;
} else if (advanced &% !specul ative &% defer) {
= (integer _form? FP_INT_ZERO : FP_ZERO;
FRIf,] = (integer_form? FP_INT_ZERO : FP_ZERO);
} else { I/ execute load normally

fp_memto fr_format(val u>> (sizel/2*8), sizel?2,
integer _form;
fp_memto fr_format(val, size/2, integer_form;

T T m
Lol I
~__~h
IS ST
I In =1

fp_memto fr_format(val, size/2, integer_form;
fp_memto fr_format(val u>> (sizel/2*8), sizel?2,
i nteger_forn);

if ((check_no_clear || advanced) && ma_is_specul ative(mattr))
// add entry to ALAT
al at _wite(FLQAT, f;, paddr, size);

}

if (base_update form { /'l update base register
CRrg = GRrg + size;
GRrz.nat = GR[rg.nat;
if (TCRrg.nat)
meminplicit_prefetch(GRrg], [dhint);
}

fp_update_psr(f,);
fp_update_psr(f,);
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Line Prefetch

Format:

Description:

Ifetch
(gp) Ifetch.iftype.lfhint [rs] no_base_update form M13
(gp) Ifetch.iftypelfhint [rg], ro reg_base update form M14
(gp) Ifetch.Iftypelfhint [rs], immg imm_base_update form M15
(gp) Ifetch.Iftype.excl.Ifhint [rs] no_base update form, exclusive form M13
(gp) Ifetch.Iftype.excl.Ifhint [rg], ro reg_base update form, exclusive form M14
(gp) Ifetch.Iftype.excl.Ifhint [r3], immg imm_base_update form, exclusive_form M15

The line containing the address specified by the value in GR r5 is moved to the highest level of the data
memory hierarchy. The value of the Ifhint modifier specifies the locality of the memory access. The
mnemonic values of Ifhint are givenin Table 7-32.

The behavior of the memory read is also determined by the memory attribute associated with the accessed
page. Line size isimplementation dependent but must be a power of two greater than or equal to 32 bytes.
In the exclusive form, the cache lineis allowed to be marked in an exclusive state. This qualifier is used
when the program expects soon to modify alocation in that line. If the memory attribute for the page
containing the line is not cacheabl e, then no reference is made.

The completer, Iftype, specifies whether or not the instruction rai ses faults normally associated with a
regular load. Table 7-31 defines these two options.

Table 7-31. Iftype Mnemonic Values

Iftype Mnemonic Interpretation
none Ignore faults
fault Raise faults

In the base update forms, after being used to address memory, the value in GR rz isincremented by either
the sign extended value in immg (in theimm_base_update_form) or the valuein GR r5 (in the

reg_base update form). Inthereg_base update form, if the NaT bit corresponding to GR r, is set, then
the NaT bit corresponding to GR r3 is set — no fault is raised.

In the reg_base_update_form and the imm_base_update_form, if the NaT bit correspondimg ito GR
clear, then the address specified by the value im{Gfer the post-increment acts as a hint to implicitly
prefetch the indicated cache line. This implicit prefetch uses the locality hints speciffaohtyhe

implicit prefetch does not affect program functionality, does not raise any faults, and may be ignored by
the implementation.

In the no_base_update_form, the value intgR® not modified and no implicit prefetch hint is implied.
If the NaT bit corresponding to GR is set then the state of memory is not affected. In the

reg_base_update_form and imm_base_update_form, the post increment;aé@Rformed and
prefetch is hinted as described above.

Table 7-32. Ifhint Mnemonic Values

Ifhint Mnemonic Interpretation
none Temporal locality, level 1
ntl No temporal locality, level 1
nt2 No temporal locality, level 2
nta No temporal locality, all levels

IA-64 Application Developer’s Architecture Guide, Rev. 1.0 7-113



Ifetch

Operation:
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if (PREgp]) {

itype = READ| NON_ACCESS;
itype | = (/ftype=="fault) ? LFETCH_FAULT : LFETCH;

if (reg_base_update_form || imm_base_update_form)

check_target_register( ra);
if (I ftype=="Fault’){ I/ faulting form
if (GR[ rg].nat && 'PSR.ed) // fault on NaT address

register_nat_consumption_fault(itype);

}

if (exclusive_form)

excl_hint = EXCLUSIVE;
else

excl_hint =0;

if IGR[  rzl.nat && !PSR.ed) {// faulting form already fa