
JFS Log

How the Journaled File System performs logging

Steve Best sbest@us.ibm.com
IBM Linux Technology Center

Note: This paper is to appear in the Proceedings
of the 4th Annual Linux Showcase &
Conference, Atlanta, Ga., October 2000

Abstract
This paper describes the logging done by the
Journaled File System (JFS). By logging, JFS
can restore the file system to a consistent state in
a matter of seconds, versus minutes or hours
with non-journaled file systems. This white
paper gives an overview of the changes to meta-
data structures that JFS logs.

Introduction

The Journaled File System (JFS) provides a log-
based, byte-level file system that was developed
for transaction-oriented, high performance
systems. Scaleable and robust, one of the key
features of the file system is logging. JFS, a
recoverable file system, ensures that if the
system fails during power outage, or system
crash, no file system transactions will be left in
an inconsistent state. The on-disk layout of JFS
will remain consistent without the need to run
fsck. JFS provides the extra level of stability
with a small decrease in performance when
meta-data changes need to be logged.

JFS uses a transaction-based logging technique
to implement recoverability. This design ensures
a full partition recovery within seconds for even
large partition sizes. JFS limits its recovery
process to the file system structures to ensure
that at the very least the user will never lose a
partition because of a corrupted file system.
Note, that user data is not guaranteed to be fully
updated if a system crash has occurred. JFS is
not designed to log user data and therefore is

able to keep all file operations to an optimal level
of performance.

A general architecture and design overview of
JFS is presented in [JFSOverview].

The development of a recoverable file system
can be viewed as the next step in file system
technology.

Recoverable File Systems

A recoverable file system, such as IBM’s
Journaled File System-(JFS), ensures partition
consistency by using database-logging
techniques originally developed for transaction
processing. If the operating system crashes, JFS
restores consistency by executing the logredo
procedure that accesses information that has
been stored in the JFS log file.

JFS incurs some performance costs for the
reliability it provides. Every transaction that
alters the on-disk layout structures requires that
one record be written to the log file for each
transaction's sub-operations. For each file
operation that requires meta-data changes, JFS
starts the logging transaction by calling the
TxBegin routine. JFS ends the transaction's sub-
operation by calling the TxEnd routine. Both
TxBegin and TxEnd will be discussed in more
detail in a later section.

Logging

JFS provides file system recoverability by the
method of transaction processing technique
called logging. The sub-operations of any
transactions that change meta-data are recorded
in a log file before they are committed to the
disk. By using this technique, if the system
crashes, partially completed transactions can be
undone when the system is rebooted. A
transaction is defined as an I/O operation that
alters the on-disk layout structures of JFS. A
completed list of operations that are logged by
JFS will be discussed later. One example of an
operation that JFS logs is the unlink of a file.

There are two main components of the JFS
logging system: the log file itself and the
transaction manager. The log file is a system
file created by the mkfs.jfs format utility.

mailto:sbest@us.ibm.com

There are several JFS data structures that the
transaction manager uses during logging and
they will be defined next.

Extents, Inodes, Block Map

A "file" is allocated in sequences of extents. An
Extent is a sequence of contiguous aggregate
blocks allocated to a JFS object as a unit. An
extent is wholly contained within a single
aggregate (and therefore a single partition);
however, large extents may span multiple
allocation groups. An extent can range in size
from 1 to 2(24) -1 aggregate blocks.

Every JFS object is represented by an inode.
Inodes contain the expected object-specific
information such as time stamps and file type
(regular vs. directory, etc.).

The Block Allocation Map is used to track the
allocated or freed disk blocks for an entire
aggregate.

The Inode Allocation Map is a dynamic array of
Inode Allocations Groups (IAGS). The IAG is
the data for the Inode Allocation Map.

A more complete description of JFS’ on-disk
layout structures is presented in [JFSLayout].

Transaction Manager

The Transaction Manager provides the core
functionality that JFS uses to do logging.

A brief explanation of the transaction flow
follows:

A call to TxBegin allocates a transaction
"block", tblk, which represents the entire
transaction.

When meta-data pages are created, modified, or
deleted, transaction "locks", tlck's, are allocated
and attached to the tblk. There is a 1 to 1
correspondence between a tlck and a meta-data
buffer (excepting that extra tlcks may be
allocated if the original overflows). The buffers
are marked 'nohomeok' to indicate that they
shouldn't be written to disk yet.

In txCommit (), the tlck's are processed and log
records are written (at least to the buffer). The

affected inodes are "written" to the inode extent
buffer (they are maintained in separate memory
from the extent buffer). Then a commit record is
written.

After the commit record has actually been
written (I/O complete), the block map and inode
map are updated as needed, and the tlck'ed meta-
data pages are marked 'homeok'. Then the tlcks
are released. Finally the tblk is released.

Example of creating a file

A brief explanation of the create transaction flow
follows:

 TxBegin(dip->i_ipmnt, &tid, 0);

 tblk = &TxBlock[tid];

 tblk->xflag |= COMMIT_CREATE;

 tblk->ip = ip;

 /* Work is done to create file */

 rc = txCommit(tid, 2, &iplist[0], 0);

TxEnd(tid);

File System operations logged by
JFS

The following list of file system operations
changes meta-data of the file system so they
must be logged.

• File creation (create)
• Linking (link)
• Making directory (mkdir)
• Making node (mknod)
• Removing file (unlink)
• Rename (rename)
• Removing directory (rmdir)
• Symbolic link (symlink)
• Set ACL (setacl)
• Writing File (write) (not on normal

conditions)
• Truncating regular file

Log File maximum size

The format utility mkfs.jfs creates the log file
size based on the partition size.

The default of the log file is .4 of the aggregate
size and this value is rounded up to a megabyte
boundary. The maximum size that the log file
can be is 32M. The log file size is then converted
into aggregate blocks.

For example, the size of the log file for 15G
partition using the default is 8192 aggregate
blocks using 4k-block size.

Logredo operations

Logredo is the JFS utility that replays the log file
upon start-up of the file system. The job of
logredo is to replay all of the transactions
committed since the most recent synch point.

The log replay is accomplished in one pass over
the log, reading backwards from log end to the
first synch point record encountered. This means
that the log entries are read and processed in
Last-In-First-Out (LIFO) order. In other words,
the records logged latest in time are the first
records processed during log replay.

Inodes, index trees, and directory
trees

Inodes, index tree structures, and directory tree
structures are handled by processing committed
redopage records, which have not been
superseded by noredo records. This processing
copies data from the log record into the
appropriate disk extent page(s).

To ensure that only the last (in time) updates to
any given disk page are applied during log
replay, logredo maintains a record (union
structure summary1/summary2), for each disk
page which it has processed, of which portions
have been updated by log records encountered.

Inode Allocation Map processing

The extent allocation descriptor B+ tree manager
for the Inode Allocation Map is journaled, and a

careful write is used to update it during commit
processing. The inode map control page
(dinomap_t) is only flushed to disk at the umount
time. For iag_t, persistent allocation map will go
to disk at commit time.

Other fields (working allocation map. sum map
of map words w/ free inodes, extents map inode
free list pointers, and inode extent free list
pointers) are at working status (i.e. they are
updated in run-time). So the following meta-data
of the inode allocation map manager needs to be
reconstructed at the logredo time:

• The persistent allocation map of inode
allocation map manager and next array
are contained in Inode Allocation
Groups.

• Allocation Group Free inode list
• Allocation Group Free Inode Extent list
• Inode Allocation Group Free list
• Fileset imap

Block Allocation Map (persistent allocation map
file) is for an aggregate. There are three fields
related to the size of persistent allocation map
(pmap) file.

1. superblock.s_size: This field indicates
aggregate size. It tells number of sector-size
blocks for this aggregate. The size of
aggregate determines the size of its pmap
file. Since the aggregate's superblock is
updated using sync-write, superblock.s_size
is trustable at logredo time.

2. dbmap_t.dn_mapsize: This field also
indicates aggregate size. It tells the number
of aggregate blocks in the aggregate.
Without extendfs, this field should be
equivalent to superblock.s_size. With
extendfs, this field may not be updated
before a system crash happens. So logredo
could need to update it. Extendfs is the JFS
utility that could provide the functionality to
increase the file system size. Ideally, the file
system should have its size increased by
using the Logical Volume Manager (LVM).

3. dinode_t.di_size: For an inode of pmap file,
this field indicates the logical size of the file.
(I.e. it contains the offset value of the last
byte written in the file plus one. So di_size
will include the pmap control page, the disk
allocation map descriptor control pages and
dmap pages. In JFS, if a file is a sparse file,
the logical size is different from its physical
size.

Note: The di_size does not contain the logical
structure of the file, i.e. the space allocated for
the extent allocation descriptor B+ tree manager
stuff is not indicated in di_size. It is indicated in
di_nblocks.

The block allocation map control page, disk
allocation map descriptor (dmap) control pages
and dmap pages are all needed to rebuild at
logredo time.

Overall, the following actions are taken at
logredo time:

• Apply log record data to the specified page.
• Initialize freelist for directory B+ tree

manager page or root.
• Rebuild inode allocation map manager.
• Rebuild block allocation map inode.

In addition, in order to ensure the log record
applies only to a certain portion of page one
time, logredo will start NoRedoFile,

The three log record types: REDOPAGE,
NOREDOPAGE, NOREDOINOEXT, and
UPDATEMAP, are the main force to initiate
these actions.

If the aggregate has state of FM_DIRTY, then
fsck.jfs will run after the logredo process since
logredo could not get 100% recovery.

The maps are rebuilt in the following way: At
the init phase, storage is allocated for the whole
map file for both inode allocation map manager
and block allocation map inode and then the map
files are read in from the disk. The working
allocation map (wmap) is initialized to zero. At
the logredo time, the wmap is used to track the
bits in persistent allocation map (pmap). In the
beginning of the logredo process the allocation
status of every block is in doubt. As log records
are processed, the allocation state is determined
and the bit of pmap is updated. This fact is
recorded in the corresponding bits in wmap. So a
pmap bit is only updated once at logredo time
and only updated by the latest in time log record.

At the end of logredo, the control information,
the freelist, etc. are built from the value of pmap;
then pmap is copied to wmap and the whole map
is written back to disk.

The status field s_state in the superblock of each
file-system is set to FM_CLEAN provided the
initial status was either FM_CLEAN or
FM_MOUNT and logredo processing was
successful. If an error is detected in logredo the
status is set to FM_LOGREDO. The status is not
changed if its initial value was FM_DIRTY. fsck
should be run to clean up the probable damage if
the status after logredo is either FM_LOGREDO
or FM_DIRTY.

Log record Format

The log record has the following format:

 <LogRecordData><LogRecLRD>

At logredo time, the log is read backwards. So
for every log record JFS reads, LogRecLRD,
which tells the length of the LogRecordData.

Logredo handles Extended
Attributes (EA)

There is 16-byte EA descriptor which is located
in the section I of dinode. The EA can be inline
or outline. If it is inlineEA then the data will
occupy the section IV of the dinode.

The dxd_t.flag will indicate so. If it is outlineEA,
dxd_t.flag will indicate so and the single extent
is described by EA descriptor. The section IV of
dinode has 128 bytes. The xtroot and inlineEA
share it. If xtree gets the section IV, xtree will
never give it away even if xtree is shrunk or split.
If inlineEA gets it, there is a chance that later
inlineEA is freed and so xtree still can get it.

For outlineEA, FS will synchronously write the
data portion so there is no log record for the data,
but there is still an INODE log record for EA
descriptor changes and there is a UPDATEMAP
log record for the allocated pxd. If an outlineEA
is freed, there are also two log records for it. One
is INODE with EA descriptor zeroed out;
another is the UPDATEMAP log record for the
freed pxd.

For inlineEA, the data has to be recorded in the
log record. It is not in a separate log record. Just
one additional segment is added into the INODE
log record. So an INODE log record can have at
most three segments. When the parent and child

inodes are in the same page, there is one segment
for parent base inode; one segment for child base
inode; and maybe one for the child inlineEA
data.

More detail flow of Logredo

Below are the major steps that logredo must
complete.

• Validate that the log is not currently in use.
• Recover if the JFS partition has increased in

size.
• Open the log.
• Read the superblock and check the

following fields: version, magic, state. If
state is LOGREDONE, update the
superblock and exit.

• Find the end of the log and initialize the data
structures used by Logredo.

• Replay log. This reads the log backwards
and processes records as it goes. Reading
stops at the place specified by the first
SYNCPT that is encountered.

• Start processing log records. There are only
seven possible log records.

• After each loop through the different log
records, check to see if the transaction just
completed was the last for the current
transaction, then flush the buffers.

• After processing all of the log records, check
to see any 'dtpage extend' records were
processed. If so go back and rebuild their
freelists.

• Run logform so the following disk pages
starting from the beginning of the log are
formatted as follows:

 page 1 - log superlock
 page 2 - A SYNC log record is written
 page 3 - N - set to empty log pages.

• Flush data page buffer cache.
• Finalize the file system by updating the

allocation map and superblock.
• Finalize the log by updating the following

fields: end, state, and magic.

Next, all of the possible log records that the
logredo utility must handle are described.

LOG_COMMIT record is used to insert the
transaction ID (tid) from commit record into the
commit array.

LOG_MOUNT record is the last record to be
processed.

LOG_SYNCPT record is the log synch point.

LOG_REDOPAGE record contains information
used to do the following operations:

• Update inode map for inodes
allocated/freed.

• Update block map for an inode extent.
• Establish NoRedoFile or NoRedoExtent

filters.
• Update block map for extents described in

extent allocation descriptor B+ tree manager
(xtree) root or node extent allocation
descriptor list.

LOG_NOREDOPAGE record starts a
NoRedoPage filter for xtree or dtree node.

LOG_NOREDOINOEXT record starts a
NoRedoPage filter for each page in the inode
extent being released.

LOG_UPDATEMP record is the update map log
record, which describes the file system block
extent(s) for the block map that needs to be
marked.

Summary

When recovering after a system failure, JFS
reads through the log file and if needed redoes
each committed transaction. After redoing the
committed transactions during a file system
recovery, JFS locates all the transactions in the
log file that were not committed at failure time
and rolls back (undoes) each sub-operation that
had been logged.

By logging JFS can restore the file system to a
consistent state in a matter of seconds, by
replaying the log file. By logging only meta-data
changes JFS is able to keep the performance of
this file system high.

Acknowledgements

The JFS Linux development team comprises:
Steve Best – sbest@us.ibm.com
Dave Kleikamp – shaggy@us.ibm.com
Barry Arndt – barndt@us.ibm.com

mailto:sbest@us.ibm.com
mailto:shaggy@us.ibm.com
mailto:barndt@us.ibm.com

References

[JFSOverview]: “JFS overview” Steve Best,
http://www-4.ibm.com/software/developer/
/library/jfs.html

[JFSLayout]: “JFS layout” Steve Best, Dave
Kleikamp,
http://www-4.ibm.com/software/developer/
/library/jfslayout/index.html

"JFS" Steve Best, published by Journal of Linux
Technology April 2000 issue
http://linux.com/jolt/

“Journal File Systems” Juan I. Santos Florido,
published by Linux Gazette
http://www.linuxgazette.com/issue55/florido.htm
l

“Journaling Filesystems” Moshe Bar, published
by Linux Magazine August 2000 issue
http://www.linux-mag.com/2000-08/toc.html

“Journaling File Systems For Linux” Moshe Bar,
published by BYTE.com May 2000
http://www.byte.com/column/servinglinux/BYT
20000524S0001

Source code for JFS Linux is available from
http://oss.software.ibm.com/developerworks/ope
nsource/jfs

JFS mailing list. To subscribe, send e-mail to
majordomo@oss.software.ibm.com with
“subscribe” in the Subject: line and “subscribe
jfs-discussion” in the body.

Trademark and Copyright Information

© 2000 International Business Machines
Corporation.
IBM ® is a registered trademark of International
Business Machines Corporation.
Linux® is a registered trademark of Linus
Torvalds.
All other brands and trademarks are property of
their respective owners.

http://linux.com/jolt/
http://www.linuxgazette.com/issue55/florido.html
http://www.linuxgazette.com/issue55/florido.html
http://www-124.ibm.com/developerworks/oss/jfs
http://www-124.ibm.com/developerworks/oss/jfs
mailto:majordomo@oss.software.ibm.com

	JFS Log
	How the Journaled File System performs logging
	
	
	Steve Best sbest@us.ibm.com

	Abstract
	Introduction
	Recoverable File Systems
	Logging
	Extents, Inodes, Block Map

	Transaction Manager
	Example of creating a file
	File System operations logged by JFS
	Log File maximum size

	Logredo operations
	Inodes, index trees, and directory trees
	Inode Allocation Map processing

	Log record Format
	Logredo handles Extended Attributes (EA)
	More detail flow of Logredo
	Summary
	
	
	Acknowledgements
	References

